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Fundamentals of prediction

Prediction is the art and science of leveraging patterns found in
natural and social processes to conjecture about uncertain events. We
use the word prediction broadly to refer to statements about things we
don’t know for sure yet, including but not limited to the outcome of
future events.

Machine learning is to a large extent the study of algorithmic
prediction. Before we can dive into machine learning, we should
familiarize ourselves with prediction. Starting from first principles,
we will motivate the goals of prediction before building up to a
statistical theory of prediction.

We can formalize the goal of prediction problems by assuming a
population of N instances with a variety of attributes. We associate
with each instance two variables, denoted X and Y. The goal of
prediction is to conjecture a plausible value for Y after observing X
alone. But when is a prediction good? For that, we must quantify
some notion of the quality of prediction and aim to optimize that
quantity.

To start, suppose that for each variable X we make a deterministic
prediction f(X) by means of some prediction function f. A natural
goal is to find a function f that makes the fewest number of incorrect
predictions, where f(X) # Y, across the population. We can think
of this function as a computer program that reads X as input and
outputs a prediction f(X) that we hope matches the value Y. For a
fixed prediction function, f, we can sum up all of the errors made on
the population. Dividing by the size of the population, we observe
the average (or mean) error rate of the function.

Minimizing errors

Let’s understand how we can find a prediction function that makes
as few errors as possible on a given population in the case of binary
prediction, where the variable Y has only two values.

Consider a population of Abalone, a type of marine snail with
colorful shells featuring a varying number of rings. Our goal is to
predict the sex, male or female, of the Abalone from the number of
rings on the shell. We can tabulate the population of Abalone by
counting for each possible number of rings, the number of male and
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female instances in the population.
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From this way of presenting the population, it is not hard to com-
pute the predictor that makes the fewest mistakes. For each value
on the X-axis, we predict “female” if the number of female instances
with this X-value is larger than the number of male instances. Other-
wise, we predict “male” for the given X-value. For example, there’s
a majority of male Abalone with seven rings on the shell. Hence, it
makes sense to predict “male” when we see seven rings on a shell.
Scrutinizing the figure a bit further, we can see that the best possible
predictor is a threshold function that returns “male” whenever the
number of rings is at most 8, and “female” whenever the number of
rings is greater or equal to 9.

The number of mistakes our predictor makes is still significant.
After all, most counts are pretty close to each other. But it’s better
than random guessing. It uses whatever there is that we can say from
the number of rings about the sex of an Abalone snail, which is just
not much.

What we constructed here is called the minimum error rule. It
generalizes to multiple attributes. If we had measured not only the
number of rings, but also the length of the shell, we would repeat the
analogous counting exercise over the two-dimensional space of all
possible values of the two attributes.

The minimum error rule is intuitive and simple, but computing
the rule exactly requires examining the entire population. Tracking
down every instance of a population is not only intractable. It also
defeats the purpose of prediction in almost any practical scenario.

Figure 1: Predicting the sex of Abalone
sea snails
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If we had a way of enumerating the X and Y value of all instances
in a population, the prediction problem would be solved. Given an
instance X we could simply look up the corresponding value of Y
from our records.

What's missing so far is a way of doing prediction that does not
require us to enumerate the entire population of interest.

Modeling knowledge

Fundamentally, what makes prediction without enumeration possible
is knowledge about the population. Human beings organize and
represent knowledge in different ways. In this chapter, we will
explore in depth the consequences of one particular way to represent
populations, specifically, as probability distributions.

The assumption we make is that we have knowledge of a proba-
bility distribution p(x,y) over pairs of X and Y values. We assume
that this distribution conceptualizes the “typical instance” in a popu-
lation. If we were to select an instance uniformly at random from the
population, what relations between its attributes might we expect?
We expect that a uniform sample from our population would be the
same as a sample from p(x,y). We call such a distribution a statistical
model or simply model of a population. The word model emphasizes
that the distribution isn’t the population itself. It is, in a sense, a
sketch of a population that we use to make predictions.

Let’s revisit our Abalone example in probabilistic form. Assume
we know the distribution of the number of rings of male and female
Abalone, as illustrated in the figure.

Both follow a skewed normal distribution described by three pa-
rameters each, a location, a scale, and a skew parameter. Knowing
the distribution is to assume that we know these parameters. Al-
though the specific numbers won’t matter for our example, let’s spell
them out for concreteness. The distribution for male Abalone has
location 7.4, scale 4.48, and skew 3.12, whereas the distribution for
female Abalone has location 7.63, scale 4.67, and skew 4.34. To com-
plete the specification of the joint distribution over X and Y, we need
to determine the relative proportion of males and females. Assume
for this example that male and female Abalone are equally likely.

Representing the population this way, it makes sense to predict
“male” whenever the probability density for male Abalone is larger
than that for female Abalone. By inspecting the plot we can see that
the density is higher for male snails up until 8 rings at which point
it is larger for female instances. We can see that the predictor we
derive from this representation is the same threshold rule that we
had before.

3
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We arrived at the same result without the need to enumerate and
count all possible instances in the population. Instead, we recovered
the minimum error rule from knowing only 7 parameters, three for
each conditional distribution, and one for the balance of the two
classes.

Modeling populations as probability distributions is an important
step in making prediction algorithmic. It allows us to represent
populations succinctly, and gives us the means to make predictions
about instances we haven’t encountered.

Subsequent chapters extend these fundamentals of prediction
to the case where we don’t know the exact probability distribution,
but only have a random sample drawn from the distribution. It is
tempting to think about machine learning as being all about that,

namely what we do with a sample of data drawn from a distribution.

However, as we learn in this chapter, many fundamentally important
questions arise even if we have full knowledge of the population.

Prediction from statistical models

Let’s proceed to formalize prediction assuming we have full knowl-
edge of a statistical model of the population. Our first goal is to
formally develop the minimum error rule in greater generality.

We begin with binary prediction where we suppose Y has two
alternative values, 0 and 1. Given some measured information X, our
goal is to conjecture whether Y equals zero or one.

Throughout we assume that X and Y are random variables drawn

Figure 2: Representing Abalone popula-
tion as a distribution
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from a joint probability distribution. It is convenient both mathemati-
cally and conceptually to specify the joint distribution as follows. We
assume that Y has a priori (or prior) probabilities:

po =P[Y =0], p1 =P[Y =1]

That is, the we assume we know the proportion of instances with Y =
1 and Y = 0 in the population. We’ll always model available informa-
tion as being a random vector X with support in R?. Its distribution
depends on whether Y is equal to zero or one. In other words, there
are two different statistical models for the data, one for each value

of Y. These models are the conditional probability densities of X
given a value y for Y, denoted p(x | Y = y). This density function is
often called a generative model or likelihood function for each scenario.

Example: Signal versus noise

For a simple example with more mathematical formalism, suppose

that when Y = 0 we observe a scalar X = w where w is unit-variance, Recall that the gaussian distribution of
zero mean gaussian noise w ~ A (0,1). Then suppose when Y = 1, mean i and variance 7 ? is given by the
. ogs _l(fx=p
we would observe X = s + w for some scalar s. That is, the conditional density lefe 1(57) )
e T

densities are

plx|Y=0)=N(0,1),
p(x | Y=1)=N(s,1).

The larger the shift s is, the easier it is to predict whether Y = 0

or Y = 1. For example, suppose s = 10 and we observed X = 11.

If we had Y = 0, the probability that the observation is greater
than 10 is on the order of 10723, and hence we’d likely think we're
in the alternative scenario where Y = 1. However, if s were very
close to zero, distinguishing between the two alternatives is rather
challenging. We can think of a small difference s that we're trying to
detect as a needle in a haystack.

Overlapping gaussians Well-separated gaussians Figure 3: Illustration of shifted gaus-
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Prediction via optimization

Our core approach to all statistical decision making will be to for-
mulate an appropriate optimization problem for which the decision
rule is the optimal solution. That is, we will optimize over algorithms,
searching for functions that map data to decisions and predictions.
We will define an appropriate notion of the cost associated to each
decision, and attempt to construct decision rules that minimize the
expected value of this cost. As we will see, choosing this optimization
framework has many immediate consequences.

Predictors and labels

A predictor is a function Y(x) that maps an input x to a prediction §j =
Y (x). The prediction 7 is also called a label for the point x. The target
variable Y can be both real valued or discrete. When Y is a discrete
random variable, each different value it can take on is called a class of
the prediction problem.

To ease notation, we take the liberty to write Y as a shorthand for
the random variable Y(X) that we get by applying the prediction
function Y to the random variable X.

The most common case we consider through the book is binary
prediction, where we have two classes, 0 and 1. Sometimes it’s mathe-
matically convenient to instead work with the numbers —1 and 1 for
the two classes.

In most cases we consider, labels are scalars that are either discrete
or real-valued. Sometimes it also makes sense to consider vector-
valued predictions and target variables.

The creation and encoding of suitable labels for a prediction
problem is an important step in applying machine learning to real
world problems. We will return to it multiple times.

Loss functions and risk

The final ingredient in our formal setup is a loss function which
generalizes the notion of an error that we defined as a mismatch
between prediction and target value.

A loss function takes two inputs, iy and y, and returns a real num-
ber ¢(i,y) that we interpret as a quantified loss for predicting i when
the target is y. A loss could be negative in which case we think of it
as a reward.

A prediction error corresponds to the loss function £(i7,y) = 1{y =
y} that indicates disagreement between its two inputs. Loss functions
give us modeling flexibility that will become crucial as we apply this
formal setup throughout this book.
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An important notion is the expected loss of a predictor taken over
a population. This construct is called risk.

Definition 1. We define the risk associated with Y to be

-~

R[Y] := E[((Y(X),Y)].
Here, the expectation is taken jointly over X and Y.

Now that we defined risk, our goal is to determine which decision
rule minimizes risk. Let’s get a sense for how we might go about this.

In order to minimize risk, theoretically speaking, we need to solve
an infinite dimensional optimization problem over binary-valued
functions. That is, for every x, we need to find a binary assignment.
Fortunately, the infinite dimension here turns out to not be a problem
analytically once we make use of the law of iterated expectation.

Lemma 1. We claim that the optimal predictor is given by

Y(x) ZH{JP[Y =1|X=x> ¢(1,0) — £(0,0)

_m ]P[YZOXZX]}.

This rule corresponds to the intuitive rule we derived when think-
ing about how to make predictions over the population. For a fixed
value of the data X = x, we compare the frequency of which Y =1
occurs to which Y = 0 occurs. If this frequency exceeds some thresh-
old that is defined by our loss function, then we set ?(x) = 1. Other-
wise, we set Y(x) = 0.

Proof. To see why this is rule is optimal, we make use of the law of
iterated expectation:

EWﬂmJﬂﬁMEMWMJHﬂy

Here, the outer expectation is over a random draw of X and the
inner expectation samples Y conditional on X. Since there are no
constraints on the predictor Y, we can minimize the expression by
minimizing the inner expectation independently for each possible
setting that X can assume.

Indeed, for a fixed value x, we can expand the expected loss for
each of the two possible predictions:

E[£(0,Y) | X =x] = £(0,0)P[Y =0| X = x] + £(0,1) P[Y =1 | X = x]
E[((1,Y) | X = x] = £(1,0

The optimal assignment for this x is to set ?(x) = 1 whenever the
second expression is smaller than the first. Writing out this inequality
and rearranging gives us the rule specified in the lemma.

O

JP[Y=0|X=x]+£4(1,1)P[Y=1|X=x].

7
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Probabilities of the form P[Y =y | X = x], as they appeared in the
lemma, are called posterior probability.
We can relate them to the likelihood function via Bayes rule:

p(x | Y =y)py
p(x)

where p(x) is a density function for the marginal distribution of X.

PY=y|X=x]=

7

When we use posterior probabilities, we can rewrite the optimal
predictor as

o [px Y =1) _ po(f(1,0) — £(0,0))
Yix) ﬂ{mx Y=0) > ;0.1 —am))} |

This rule is an example of a likelihood ratio test.

Definition 2. The likelihood ratio is the ratio of the likelihood functions:

oo PElY=1
L= v =0)

A likelihood ratio test (LRT) is a predictor of the form

~

Y(x) = 1L(x) = )
for some scalar threshold > 0.

If we denote the optimal threshold value

_ po(£(1,0) — £(0,0))
p1(£(0,1) = £(1,1)) 7

then the predictor that minimizes the risk is the likelihood ratio test

(1)

~

Y(x) =1{L(x) = n}.
A LRT naturally partitions the sample space in two regions:

Xo={xeX: L(x) <n}

Xy ={xeX: L(x)>n}.
The sample space X then becomes the disjoint union of Ay and Aj.
Since we only need to identify which set x belongs to, we can use any
function / : X — R which gives rise to the same threshold rule. As
long as h(x) < t whenever £(x) < 7 and vice versa, these functions

give rise to the same partition into &y and &}. So, for example, if g is
any monotonically increasing function, then the predictor

Yo(x) = H{g(L(x) = gn)}

is equivalent to using Y (x). In particular, it’s popular to use the
logarithmic predictor

Yiog(x) = 1{log p(x | Y =1) ~log p(x | Y = 0) > log(n)},
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as it is often more convenient or mathematically stable to work with
logarithms of likelihoods.

This discussion shows that there are an infinite number of functions
which give rise to the same binary predictor. Hence, we don’t need
to know the conditional densities exactly and can still compute the
optimal predictor. For example, suppose the true partitioning of the
real line under an LRT is

Xo={x:x>0} and A} ={x:x<0}.

Setting the threshold to t = 0, the functions #(x) = x or h(x) = x3
give the same predictor, as does any odd function which is positive
on the right half line.

Example: needle in a haystack revisited

Let’s return to our needle in a haystack example with

p(X|Y=0)=N(0,1),
p(X|Y=1)=N(s1),

and assume that the prior probability of Y = 1 is very small,

say, p1 = 107°. Suppose that if we declare Y = 0, we do not pay

a cost. If we declare Y = 1 but are wrong, we incur a cost of 100. But
if we guess Y =1anditis actually true that Y = 1, we actually gain a
reward of 1,000, 000. That is

£(0,0) =0, £(0,1) =0, £(1,0) = 100, and £(1,1) = —1,000,000.

What is the LRT for this problem? Here, it’s considerably easier to
work with logarithms:

_ (1-107°)-100 _
log(n) = log (10_6 106 ~ 4.61
Now,
1 2 1o 1o
logp(x | Y=1)—logp(x|Y=0) = —E(x—s) Xt =sx— s

Hence, the optimal predictor is to declare

Y=1 {sx > 1s? +log(17)} :

The optimal rule here is linear. Moreover, the rule divides the space
into two open intervals. While the entire real line lies in the union
of these two intervals, it is exceptionally unlikely to ever see an x
larger than |s| + 5. Hence, even if our predictor were incorrect in these
regions, the risk would still be nearly optimal as these terms have
almost no bearing on our expected risk!
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Canonical cases of likelihood ratio tests

A folk theorem of statistical decision theory states that essentially all
optimal rules are equivalent to likelihood ratio tests. While this isn’t
always true, many important prediction rules end up being equivalent
to LRTs. Shortly, we’ll see an optimization problem that speaks to the
power of LRTs. But before that, we can already show that the well
known maximum likelihood and maximum a posteriori predictors are
both LRTs.

Maximum a posteriori rule

The expected error of a predictor is the expected number of times
we declare Y = 0 (resp. Y = 1) when Y =1 (resp. Y = 0) is

true. Minimizing the error is equivalent to minimizing the risk with
cost £(0,0) = ¢(1,1) =0, £(1,0) = £(0,1) = 1. The optimum predictor
is hence a likelihood ratio test. In particular,

Y(x)=1 {E(x) > ;;3} .
Using Bayes rule, one can see that this rule is equivalent to

Y(x) = arg max P[Y =y | X = x].
(x) = arg max PIY =y X =x
Recall that the expression P[Y = y | X = x] is called the posterior
probability of Y = y given X = x. And this rule is hence referred to
as the maximum a posteriori (MAP) rule.

Maximum likelihood rule

As we discussed above, the expression p(x | Y = y) is called the
likelihood of the point x given the class Y = y. A maximum likelihood
rule would set

Y(x) = argm;x p(x|Y=y).

This is completely equivalent to the LRT when pg = p; and the costs
are £(0,0) = £(1,1) = 0, £(1,0) = £(0,1) = 1. Hence, the maximum
likelihood rule is equivalent to the MAP rule with a uniform prior on
the labels.

That both of these popular rules ended up reducing to LRTs is no
accident. In what follows, we will show that LRTs are almost always
the optimal solution of optimization-driven decision theory.

Types of errors and successes

Let Y(x) denote any predictor mapping into {0,1}. In this section we
define some popular notions of error and success.



PATTERNS, PREDICTIONS, AND ACTIONS - 2021—09-16

~

1. True Positive Rate: TPR = P[Y(X) =1 | Y = 1]. Also known as
power, sensitivity, probability of detection, or recall.

2. False Negative Rate: FNR = 1 — TPR. Also known as type II error
or probability of missed detection.

3. False Positive Rate: FPR = P[Y(X) = 1| Y = 0]. Also known as
size or type I error or probability of false alarm.

4. True Negative Rate TNR = 1 — FPR, the probability of declaring
Y = 0 given Y = 0. This is also known as specificity.
There are other quantities that are also of interest in statistics and

machine learning:

1. Precision: P[Y = 1| Y(X) = 1]. This is equal to (p;TPR)/(poFPR +
p1TPR).
2. F1-score: F; is the harmonic mean of precision and recall. We can

write this as
2TPR

T 1+TPR+ PR

1

3. False discovery rate: False discovery rate (FDR) is equal to the
expected ratio of the number of false positives to the total number
of positives.

In the case where both labels are equally likely, precision, Fj,
and FDR are also only functions of FPR and TPR. However, these
quantities explicitly account for class imbalances: when there is a sig-
nificant skew between py and p;, such measures are often preferred.

TPR and FPR are competing objectives. We’d like TPR as large as
possible and FPR as small as possible.

We can think of risk minimization as optimizing a balance be-
tween TPR and FPR:

R[Y] := E[¢(Y(X),Y)] = aFPR — BTPR + 7,

where & and 8 are nonnegative and -y is some constant. For all
such &, B, and 7, the risk-minimizing predictor is an LRT.

Other cost functions might try to balance TPR versus FPR in other
ways. Which pairs of (FPR, TPR) are achievable?

ROC curves

The receiver operating characteristic (ROC) of a decision problem is the
curve upper envelope of achievable pairs in the FPR — TPR plane.

It traces out the maximal TPR for any given FPR. Clearly the ROC
curve contains values (0,0) and (1,1), which are achieved by LRTs
with 17 = £co. We will now show, in a celebrated result by Neyman
and Pearson, that the ROC curve is given by varying 7 in the LRT
from negative to positive infinity.

11
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The Neyman-Pearson Lemma

The Neyman-Pearson Lemma, a fundamental lemma of decision
theory, will be an important tool for us to establish three important
facts. First, it will be a useful tool for understanding the geometric
properties of ROC curves. Second, it will demonstrate another im-
portant instance where an optimal predictor is a likelihood ratio test.
Third, it introduces the notion of probabilistic predictors.

Suppose we want to maximize true positive rate subject to an
upper bound on the false positive rate. That is, we aim to solve the
optimization problem:

maximize TPR
subject to FPR <«

Let’s optimize over probabilistic predictors. A probabilistic predic-
tor Q returns 1 with probability Q(x) and 0 with probability 1 — Q(x).
With such rules, we can rewrite our optimization problem as:

maximizeg E[Q(X) | Y =1]
subjectto  E[Q(X) | Y =0 <uw
Vx: Q(x) € [0,1]

Lemma 2. Neyman-Pearson Lemma. Suppose the likelhood func-
tions p(x|Y) are continuous. Then the optimal probabilistic predictor that
maximizes TPR with an upper bound on FPR is a deterministic likelihood
ratio test.

Even in this constrained setup, allowing for more powerful prob-
abilistic rules, we can’t escape likelihood ratio tests. The Neyman-
Pearson Lemma has many interesting consequences in its own right
that we will discuss momentarily. But first, let’s see why the lemma is
true.

The key insight is that for any LRT, we can find a loss function for
which it is optimal. We will prove the lemma by constructing such a
problem, and using the associated condition of optimality.

Proof. Let 1 be the threshold for an LRT such that the predictor
Qy(x) = 1{L(x) > n}

has FPR = a. Such an LRT exists because we assumed our likelihoods
were continuous. Let B denote the TPR of Q.

We claim that Q; is optimal for the risk minimization problem
corresponding to the loss function

£(1,0) =1, £(0,1) =1, £(1,1) =0, £(0,0) =0.
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Indeed, recalling Equation 1, the risk minimizer for this loss function
corresponds to a likelihood ratio test with threshold value

po(£(1,0) — £(0,0)) _ pol(1,0) _
P (60,1) —£(1,1)) ~ pl(o,1) "

Moreover, under this loss function, the risk of a predictor Q equals
R[QJ = poFPR(Q){(1,0) + p1(1 — TPR(Q))¢(0, 1)
= p17FPR(Q) + p1(1 — TPR(Q)) -

Now let Q be any other predictor with FPR(Q) < a. We have by
the optimality of Qy that

pine+ p1(1—B) < piyFPR(Q) + p1(1 — TPR(Q))
< pina + p1(1—TPR(Q)),

which implies TPR(Q) < B. This in turn means that Q;,, maxi-
mizes TPR for all rules with FPR < &, proving the lemma.

Properties of ROC curves

A specific randomized predictor that is useful for analysis combines
two other rules. Suppose predictor one yields (FPRM, TPRM) and
the second rule achieves (FPR(2>, TPR(Z)). If we flip a biased coin and
use rule one with probability p and rule 2 with probability 1 — p, then
this yields a randomized predictor with (FPR, TPR) = (pFPR() +

(1 — p)FPR®), pTPRM + (1 — p)TPR®?). Using this rule lets us prove
several properties of ROC curves.

Proposition 1. (0,0) and (1,1) are on the ROC curve.

This proposition follows because (0,0) is achieved when =
0. (1,1) is achieved when n = —o0.

Proposition 2. TPR > FPR.

To see why this proposition is true, fix some & > 0. Using a
randomized rule, we can achieve a predictor with TPR = FPR = «.
But the Neyman-Pearson LRT with FPR constrained to be less than
or equal to a achieves true positive rate greater than or equal to the
randomized rule.

Proposition 3. The ROC curve is concave.

Suppose (FPR(71), TPR(771)) and (FPR(72), TPR(#2)) are achiev-
able. Then

(tFPR(771) + (1 — £)FPR(772), tTPR(171) + (1 — £)TPR(72))

13
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is achievable by a randomized test. Fixing FPR < tFPR(%1) +
(1 — t)FPR(72), we see that the optimal Neyman-Pearson LRT
achieves TPR > TPR(71) + (1 — t)TPR(712).

Example: the needle one more time

Consider again the needle in a haystack example, where p(x | Y =
0) = N(0,6®)and p(x | Y = 1) = N(s,0?) with s a positive
scalar. The optimal predictor is to declare Y = 1 when X is greater

2
than v := § + 7 l;)g”. Hence we have

TPR:/OO x|Y=1)dx=1 f<“>
[ pta Y =1)dx = ferte (125

FPR:/oo x|Y=0 dx—lerfc<ry>.
[ Y = 0)dx = Jerte (-

For fixed s and o, the ROC curve (FPR(+y), TPR(y)) only depends
on the signal to noise ratio (SNR), s/c. For small SNR, the ROC curve
is close to the FPR = TPR line. For large SNR, TPR approaches 1 for
all values of FPR.

1.0 1
0.8 -
~ 067 SNR =0.25
= SNR = 0.5
0.4 -
—— SNR=1
0.2 1 —— SNR=2
—— SNR =4
0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
FPR

Area under the ROC curve

Often times in information retrieval and machine learning, the term
ROC curve is overloaded to describe the achievable FPR-TPR pairs of
a particular decision function or algorithm. Note such curves must lie
below the ROC curves that are traced out by the true likelihood ratio
tests, but may approximate the true ROC curves in many cases.

A popular summary statistic for evaluating the quality of a de-
cision function is the area under its associated ROC curve. This is
commonly abbreviated as AUC. In the ROC curve plotted in the

Figure 4: The ROC curves for various
signal to noise ratios in the needle in
the haystack problem.
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previous section, as the SNR increases, the AUC increases. However,
AUC does not tell the entire story. Here we plot two ROC curves
with the same AUC.
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If we constrain FPR to be less than 10%, for the blue curve, TPR
can be as high as 80% whereas it can only reach 50% for the red.
AUC should be always viewed skeptically: the shape of an ROC
curve is always more informative than any individual number.

Looking ahead: what if we don’t know the models?

This chapter examined how to make decisions when we have access
to known probabilistic models about both data and priors about the
distribution of labels. The ubiquitous solution to decision problems
is a likelihood ratio test. But note we first derived something even
simpler: a posterior ratio test. That is, we could just compare the
probability of Y = 1 given our data to the probability of Y = 0
given our data, and decide on Y = 1 if its probability was sufficiently
larger than that of Y =o. Comparing likelihoods or posteriors are
equivalent up to a rescaling of the decision threshold.

What if we don’t have a probabilistic model of how the data is gen-
erated? There are two natural ways forward: Either estimate p(X | Y)
from examples or estimate P[Y | X] from examples. Estimating
likelihood models is a challenge as, when X is high dimensional,
estimating p(X | Y) from data is hard in both theory and practice.
Estimating posteriors on the other hand seems more promising. Esti-
mating posteriors is essentially like populating an excel spreadsheet
and counting places where many columns are equal to one another.

But estimating the posterior is also likely overkill. We care about
the likelihood or posterior ratios as these completely govern our

Figure 5: Two ROC curves with the
same AUC. Note that if we constrain
FPR to be less than 10%, for the blue
curve, TPR can be as high as 80%
whereas it can only reach 50% for the
red.
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predictors. It's possible that such ratios are easier to estimate than
the quantities themselves. Indeed, we just need to find any function
f where f(x) > 0ifp(x | Y =1)/p(x | Y =0) > yand f(x) <0
if p(x | Y=1)/p(x | Y =0) <y. So if we only have samples

S={(xL,y1), - (xn,yn)}

of data and their labels, we could try to minimize the sample average

S |-

n
Rs(f) = = Y L(f(xi),yi)
i=1
with respect to f. This approach is called empirical risk minimiza-
tion (ERM) and forms the basis of most contemporary ML and Al
systems. We will devote a the next several chapters of this text to
understanding the ins and outs of ERM.

Decisions that discriminate

The purpose of prediction is almost always decision making. We
build predictors to guide our decision making by acting on our
predictions. Many decisions entail a life changing event for the
individual. The decision could grant access to a major opportunity,
such as college admission, or deny access to a vital resource, such as
a social benefit.

Binary decision rules always draw a boundary between one group
in the population and its complement. Some are labeled accept, others
are labeled reject. When decisions have serious consequences for the
individual, however, this decision boundary is not just a technical
artifact. Rather it has moral and legal significance.

The decision maker often has access to data that encode an indi-
vidual’s status in socially salient groups relating to race, ethnicity,
gender, religion, or disability status. These and other categories that
have been used as the basis of adverse treatment, oppression, and
denial of opportunity in the past and in many cases to this day.

Some see formal or algorithmic decision making as a neutral
mathematical tool. However, numerous scholars have shown how
formal models can perpetuate existing inequities and cause harm. In
her book on this topic, Ruha Benjamin warns of

the employment of new technologies that reflect and reproduce existing
inequities but that are promoted and perceived as more objective or progressive

than the discriminatory systems of a previous era.* * Benjamin, Race After Technology (Polity,
2019).

Even though the problems of inequality and injustice are much
broader than one of formal decisions, we already encounter an im-
portant and challenging facet within the narrow formal setup of this



PATTERNS, PREDICTIONS, AND ACTIONS - 2021—09-16

chapter. Specifically, we are concerned with decision rules that dis-
criminate in the sense of creating an unjustified basis of differentiation
between individuals.

A concrete example is helpful. Suppose we want to accept or
reject individuals for a job. Suppose we have a perfect estimate of
the number of hours an individual is going to work in the next 5
years. We decide that this a reasonable measure of productivity and
so we accept every applicant where this number exceeds a certain
threshold. On the face of it, our rule might seem neutral. However,
on closer reflection, we realize that this decision rule systematically
disadvantages individuals who are more likely than others to make
use of their parental leave employment benefit that our hypothetical
company offers. We are faced with a conundrum. On the one hand,
we trust our estimate of productivity. On the other hand, we consider
taking parental leave morally irrelevant to the decision we’re making.
It should not be a disadvantage to the applicant. After all that is
precisely the reason why the company is offering a parental leave
benefit in the first place.

The simple example shows that statistical accuracy alone is no safe-
guard against discriminatory decisions. It also shows that ignoring
sensitive attributes is no safeguard either. So what then is discrimina-
tion and how can we avoid it? This question has occupied scholars
from numerous disciplines for decades. There is no simple answer.
Before we go into attempts to formalize discrimination in our sta-
tistical decision making setting, it is helpful to take a step back and
reflect on what the law says.

Legal background in the United States

The legal frameworks governing decision making differ from country
to country, and from one domain to another. We take a glimpse at the
situation in the United States, bearing in mind that our description is
incomplete and does not transfer to other countries.

Discrimination is not a general concept. It is concerned with
socially salient categories that have served as the basis for unjustified
and systematically adverse treatment in the past. United States law
recognizes certain protected categories including race, sex (which
extends to sexual orientation), religion, disability status, and place of
birth.

Further, discrimination is a domain specific concept concerned
with important opportunities that affect people’s lives. Regulated
domains include credit (Equal Credit Opportunity Act), education
(Civil Rights Act of 1964; Education Amendments of 1972), employ-
ment (Civil Rights Act of 1964), housing (Fair Housing Act), and

17
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public accommodation (Civil Rights Act of 1964). Particularly relevant
to machine learning practitioners is the fact that the scope of these
regulations extends to marketing and advertising within these do-
mains. An ad for a credit card, for example, allocates access to credit
and would therefore fall into the credit domain.

There are different legal frameworks available to a plaintiff that
brings forward a case of discrimination. One is called disparate treat-
ment, the other is disparate impact. Both capture different forms of
discrimination. Disparate treatment is about purposeful consider-
ation of group membership with the intention of discrimination.
Disparate impact is about unjustified harm, possibly through indirect
mechanisms. Whereas disparate treatment is about procedural fairness,
disparate impact is more about distributive justice.

It's worth noting that anti-discrimination law does not reflect one
overarching moral theory. Pieces of legislation often came in response
to civil rights movements, each hard fought through decades of
activism.

Unfortunately, these legal frameworks don’t give us a formal
definition that we could directly apply. In fact, there is some well-
recognized tension between the two doctrines.

Formal non-discrimination criteria

The idea of formal non-discrimination (or fairness) criteria goes back
to pioneering work of Anne Cleary and other researchers in the
educational testing community of the 1960s.>

The main idea is to introduce a discrete random variable A that
encodes membership status in one or multiple protected classes.
Formally, this random variable lives in the same probability space
as the other covariates X, the decision Y = 1{R > t} in terms
of a score R, and the outcome Y. The random variable A might
coincide with one of the features in X or correlate strongly with some
combination of them.

Broadly speaking, different statistical fairness criteria all equalize
some group-dependent statistical quantity across groups defined by
the different settings of A. For example, we could ask to equalize
acceptance rates across all groups. This corresponds to imposing the
constraint for all groups a and b:

PY=1|A=a=P[Y=1|A=10

Researchers have proposed dozens of different criteria, each trying
to capture different intuitions about what is fair. Simplifying the
landscape of fairness criteria, we can say that there are essentially
three fundamentally different ones of particular significance:

2 Hutchinson and Mitchell, “50 Years

of Test (Un) Fairness: Lessons for
Machine Learning,” in Proceedings of the
Conference on Fairness, Accountability, and
Transparency, 2019, 49-58.
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e Acceptance rate P[Y = 1]

e Errorrates P[Y =0|Y=1]and P[Y =1]|Y = 0]
¢ Outcome frequency given score value P[Y =1 | R =]

The meaning of the first two as a formal matter is clear given what
we already covered. The third criterion needs a bit more motivation.
A useful property of score functions is calibration which asserts
that P[Y = 1 | R = r|] = r for all score values r. In words, we
can interpret a score value r as the propensity of positive outcomes
among instances assigned the score value r. What the third criterion
says is closely related. We ask that the score values have the same
meaning in each group. That is, instances labeled r in one group are
equally likely to be positive instances as those scored r in any other
group.

The three criteria can be generalized and simplified using three
different conditional independence statements.

Table 1: Non-discrimination criteria

Independence Separation Sufficiency

RLA|]Y YLA|R

RL1LA

Each of these applies not only to binary prediction, but any set
of random variables where the independence statement holds. It's
not hard to see that independence implies equality of acceptance
rates across groups. Separation implies equality of error rates across
groups. And sufficiency implies that all groups have the same rate of
positive outcomes given a score value.’

Researchers have shown that any two of the three criteria are
mutually exclusive except in special cases. That means, generally
speaking, imposing one criterion forgoes the other two.4

Although these formal criteria are easy to state and arguably
natural in the language of decision theory, their merit as measures of
discrimination has been subject of an ongoing debate.

Merits and limitations of a narrow statistical perspective

The tension between these criteria played out in a public debate
around the use of risk scores to predict recidivism in pre-trial deten-
tion decisions.

There’s a risk score, called COMPAS, used by many jurisdictions
in the United States to assess risk of recidivism in pre-trial bail deci-
sions.> Judges may detain defendants in part based on this score.

Investigative journalists at ProPublica found that Black defendants

3 Barocas, Hardt, and Narayanan,
Fairness and Machine Learning (fairml-
book.org, 2019).

4Kleinberg, Mullainathan, and Ragha-
van, “Inherent Trade-Offs in the Fair
Determination of Risk Scores,” in Inno-
vations in Theoretical Computer Science,
2017; Chouldechova, “Fair Prediction
with Disparate Impact: A Study of
Bias in Recidivism Prediction Instru-
ments,” in Fairness, Accountability, and
Transparency, 2016.

5 Recidivism refers to a person’s relapse
into criminal behavior. In the United
States, a defendant may either be
detained or released on a bail prior to
the trial in court depending on various
factors.
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face a higher false positive rate, i.e., more Black defendants labeled
high risk end up not committing a crime upon release than among
White defendants labeled high risk.® In other words, the COMPAS
score fails the separation criterion.

A company called Northpointe, which sells the proprietary COM-
PAS risk model, pointed out in return that Black and White defen-
dants have equal recidivism rates given a particular score value. That
is defendants labeled, say, an ‘8’ for high risk would go on to recidi-
vate at a roughly equal rate in either group. Northpointe claimed that
this property is desirable so that a judge can interpret scores equally
in both groups.”

The COMPAS debate illustrates both the merits and limitations of
the narrow framing of discrimination as a classification criterion.

On the hand, the error rate disparity gave ProPublica a tangible
and concrete way to put pressure on Northpointe. The narrow fram-
ing of decision making identifies the decision maker as responsible
for their decisions. As such, it can be used to interrogate and possibly
intervene in the practices of an entity.

On the other hand, decisions are always part of a broader system
that embeds structural patterns of discrimination. For example, a
measure of recidivism hinges crucially on existing policing patterns.
Crime is only found where policing activity happens. However, the
allocation and severity of police force itself has racial bias. Some
scholars therefore find an emphasis on statistical criteria rather than
structural determinants of discrimination to be limited.

Chapter notes

The theory we covered in this chapter is also called detection theory
and decision theory. Similarly, what we call a predictor throughout has
various different names, such as decision rule or classifier.

The elementary detection theory covered in this chapter has not
changed much at all since the 1950s and is essentially considered
a “solved problem.” Neyman and Pearson invented the likelihood
ratio test® and later proved their lemma showing it to be optimal
for maximizing true positive rates while controlling false positive
rates.9 Wald followed this work by inventing general Bayes risk
minimization in 1939.7° Wald's ideas were widely adopted during
World War II for the purpose of interpreting RADAR signals which
were often very noisy. Much work was done to improve RADAR
operations, and this led to the formalization that the output of a
RADAR system (the receiver) should be a likelihood ratio, and a
decision should be made based on an LRT. Our proof of Neyman-
Pearson’s lemma came later, and is due to Bertsekas and Tsitsiklis

¢ Angwin et al., “Machine

Bias,” ProPublica, May 2016,
https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentenci

7 Dieterich, Mendoza, and Brennan,

“COMPAS Risk Scales: Demon-

strating Accuracy Equity and

Predictive Parity,” 2016, https:

//www .documentcloud.org/documents/
2998391-ProPublica-Commentary-Final-070616.
html.

8 Neyman and Pearson, “On the Use
and Interpretation of Certain Test
Criteria for Purposes of Statistical
Inference: Part i,” Biometrika, 1928,
175-240.

9 Neyman and Pearson, “On the Prob-
lem of the Most Efficient Tests of
Statistical Hypotheses,” Philosophical
Transactions of the Royal Society of Lon-
don. Series A 231, no. 694—706 (1933):
289-337.

** Wald, “Contributions to the Theory
of Statistical Estimation and Testing
Hypotheses,” The Annals of Mathematical
Statistics 10, no. 4 (1939): 299-326.
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(See Section 9.3 of Introduction to Probability™™).

Our current theory of detection was fully developed by Peterson,
Birdsall, and Fox in their report on optimal signal detectability.'>
Peterson, Birdsall, and Fox may have been the first to propose Re-
ceiver Operating Characteristics as the means to characterize the
performance of a detection system, but these ideas were contem-
poraneously being applied to better understand psychology and
psychophysics as well.*3

Statistical Signal Detection theory was adopted in the pattern
recognition community at a very early stage. Chow proposed using
optimal detection theory," and this led to a proposal by Highleyman
to approximate the risk by its sample average.'> This transition from
population risk to “empirical” risk gave rise to what we know today
as machine learning.

Of course, how decisions and predictions are applied and inter-
preted remains an active research topic. There is a large amount of
literature now on the topic of fairness and machine learning. For a
general introduction to the problem and dangers associated with
algorithmic decision making not limited to discrimination, see the
books by Benjamin,16 Broussard,” Eubanks,'® Noble,9 and O’Neil.2°
The technical material in our section on discrimination follows Chap-
ter 2 in the textbook by Barocas, Hardt, and Narayanan.>*
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