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Optimization

In Chapter 2, we devised a closed form expression for the optimal
decision rule assuming we have a probability model for the data. Then
we turned to empirical risk minimization (ERM) where we instead rely on
numerical methods to discover good decision rules when we don’t have
such a probability model. In this chapter, we take a closer look at how to
solve empirical risk minimization problems effectively. We focus on the core
optimization methods commonly used to solve empirical risk minimization
problems and on the mathematical tools used to analyze their running
times.

Our main subject will be gradient descent algorithms and how to shape
loss functions so that gradient descent succeeds. Gradient descent is an
iterative procedure that iterates among possible models, at each step re-
placing the old model with one with lower empirical risk. We show that
the class of optimization problems where gradient descent is guaranteed
to find an optimal solution is the set of convex functions. When we turn to
risk minimization, this means that gradient descent will find the model that
minimizes the empirical risk whenever the loss function is convex and the
decision function is a linear combination of features.

We then turn to studying stochastic gradient descent, the workhorse of
machine learning. Stochastic gradient descent is effectively a generalization
of the perceptron learning rule. Its generality enables us to apply it to a
variety of function classes and loss functions and guarantee convergence
even if the data may not be separable. We spend a good deal of time looking
at the dynamics of the stochastic gradient method to try to motivate why it
is so successful and popular in machine learning.

Starting from the convex case, we work towards more general noncon-
vex problems. In particular, we highlight two salient features of gradient
descent and stochastic gradient descent that are particular to empirical risk
minimization and help to motivate the resilience of these methods.

First, we show that even for problems that are not convex, gradient
descent for empirical risk minimization has an implicit convexity property
that encourages convergence. Though we explicitly optimize over function
representations which are computationally intractable to optimize in the
worst-case, it turns out that we can still reason about the convergence of the



predictions themselves.

Second, we show that gradient descent implicitly manages the com-
plexity of the prediction function, encouraging solutions of low complexity
in cases where infinitely many solutions exist. We close the chapter with
a discussion of other methods for empirical risk minimization that more
explicitly account for model complexity and stable convergence.

Optimization basics

Stepping away from empirical risk minimization for a moment, consider
the general minimization problem

minimize,, D (w)

where ®: R? — R is a real-valued function over the domain R?.
When and how can we minimize such a function? Before we answer this
question, we need to formally define what we’re shooting for.

Definition 1. A point w, is a minimizer of ® if ®(w,) < ®(w) for all w. It
is a local minimizer of ® if for some € > 0, ®(w,) < P(w) for all w such
that ||w — w,| <e.

Sometimes we will refer to minimizers as global minimizers to contrast against
local minimizers.

The figure below presents example functions and their minima. In
the first illustration, there is a unique minimizer. In the second, there
are an infinite number of minimizers, but all local minimizers are global
minimizers. In the third example, there are many local minimizers that are
not global minimizers.

Note that in our example, the two functions without suboptimal local
minimizers share the property that for any two points w; and w;, the line
segment connecting (w1, P(wy)) to (wy, P(w,)) lies completely above the
graph of the function. Such functions are called convex functions.

Definition 2. A function ® is convex if for all wy, wo in R and a € [0,1],
Plaw; + (1 —a)wy) < a®(wy) + (1 —a)D(wy) .

We will see shortly that convex functions are the class of functions where
gradient descent is guaranteed to find an optimal solution.
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Gradient descent

Suppose we want to minimize a differentiable function ®: R? — R. Most
of the algorithms we will consider start at some point wp and then aim to
find a new point w; with a lower function value. The simplest way to do so
is to find a direction v such that ® is decreasing when moving along the
direction v. This notion can be formalized by the following definition:

Definition 3. A vector v is a descent direction for ® at wy if P(wg + tv) <
®(wy) for some t > 0.

For continuously differentiable functions, it’s easy to tell if v is a descent
direction: if vT V®(wy) < 0 then v is a descent direction.
To see this note that by Taylor’s theorem,

@ (wp + av) = d(wp) +aVd(wy + &v)To

for some & € [0,a]. By continuity, if a is small, we’ll have V®(wy + &v)Tv <
0. Therefore ®(wy + av) < ®(wp) and v is a descent direction.

This characterization of descent directions allows us to provide condi-
tions as to when w minimizes ®.

Proposition 1. The point w, is a local minimizer only if V®(w,) = 0.

Why is this true? Well, the point —V®(w,) is always a descent direction
if it’s not zero. If w, is a local minimum, there can be no descent directions.
Therefore, the gradient must vanish.

Gradient descent uses the fact that the negative gradient is always
a descent direction to construct an algorithm: repeatedly compute the
gradient and take a step in the opposite direction to minimize ®.

Gradient Descent
e Start from an initial point wy € R%.
e Ateachstept=0,1,2,...

— Choose a step size a; > 0
— Set W41 = Wt — octVCD(wt)

Gradient descent terminates whenever the gradient is so small that the
iterates w; no longer substantially change. Note now that there can be
points where the gradient vanishes but where the function is not minimized.
For example, maxima have this property. In general, points where the
gradient vanishes are called stationary points. It is critically important to
remember that not all stationary points are minimizers.

For convex @, the situation is dramatically simpler. This is part of the
reason why convexity is so appealing.

4



local min saddle poiﬁt

v

77 000’$‘
T 00 8%
////;""0“"‘

NN
AKX
/I/,'o”““\“‘\\\\\

Figure 3: Examples of stationary points.

Proposition 2. Let ® : R? — R be a differentiable convex function. Then wy is a
global minimizer of ® if and only if V& (w,) = 0.

Proof. To prove this, we need our definition of convexity: for any a € [0,1]
and w € RY,

P(wy +a(w—wy)) = P((1 —a)w, +aw) < (1 —a)P(wy) + ad(w)

Here, the inequality is just our definition of convexity. Now, if we rearrange
terms, we have

P(wy + a(w — wy)) — O(wy)

P(w) > P(wy) + .

Now apply Taylor’s theorem: there is now some & € [0, 1] such that ®(w, +
a(w—wy)) — P(wy) = aVP(wy + &(w — wy))T (w — wy). Taking the limit
as « goes to zero yields

O (w) > ®(w,) + VO(w,) T (w — w,).

But if V®(w,) = 0, that means, ®(w) > ®(wy) for all w, and hence w,
is a global minimizer.
]

Tangent hyperplanes always fall below the graphs of convex functions.

Proposition 3. Let ® : RY — R be a differentiable convex function. Then for
any u and v, we have

O (u) > @(v) + VP(v) (u—0).



Figure 4: Tangent planes to graphs of functions are defined by the gradient.

A convex function cookbook

Testing if a function is convex can be tricky in more than two dimensions.
But here are 5 rules that generate convex functions from simpler functions.
In machine learning, almost all convex cost functions are built using these

rules.
1.

2.

All norms are convex (this follows from the triangle inequality).
If ® is convex and a > 0, then a® is convex.

If ® and ¥ are convex, then ® + ¥ is convex.

If ® and ¥ are convex, then h(w) = max{®(w), ¥(w)} is convex.

If ® is convex and A is a matrix and b is a vector, then the func-
tion h(w) = ®(Aw + b) is convex.

All of these properties can be verified using only the definition of convex
functions. For example, consider the 4th property. This is probably the
trickiest of the list. Take two points w; and w, and a € [0,1]. Suppose,
without loss of generality, that ®((1 — a)w; + aw;) > ¥ ((1 — a)wy + awy)

h((1—a)wy + awy) = max{P((1 — a)wy + awy), ¥((1 — a)wy + awy)}

= O((1 — a)wy + aw,)

< (1—a)®(wy) + ad(ws)

< (1 — o) max{®(wy), ¥(wy)} + a max{P(wy), ¥ (wy)}
= (1 —a)h(wy) + ah(w,)
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Here, the first inequality follows because @ is convex. Everything else
follows from the definition that / is the max of ® and ¥. The reader should
verify the other four assertions as an exercise. Another useful exercise is to
verify that the SVM cost in the next section is convex by just using these five
basic rules and the fact that the one dimensional function f(x) = mx + b is
convex for any scalars m and b.

Applications to empirical risk minimization

For decision theory problems, we studied the zero-one loss that counts
errors:
loss(y,y) = 1{yy < 0}

Unfortunately, this loss is not useful for the gradient method. The gradient
is zero almost everywhere. As we discussed in the chapter on supervised
learning, machine learning practice always turns to surrogate losses that
are easier to optimize. Here we review three popular choices, all of which
are convex loss functions. Each choice leads to a different important opti-
mization problem that has been studied in its own right.

The support vector machine

Consider the canonical problem of support vector machine classification.
We are provided pairs (x;,y;), with x; € R? and y; € {—1,1} fori=1,...n
(Note, the y labels are now in {—1,1} instead of {0,1}.) The goal is to find
a vector w € R? such that:

wlx; >0 for yi=1
wlx; <0 fory; = —1

Such a w defines a half-space where we believe all of the positive examples
lie on one side and the negative examples on the other.

Rather than classifying these points exactly, we can allow some slack. We
can pay a penalty of 1 — y;wx; points that are not strongly classified. This
motivates the hinge loss we encountered earlier and leads to the support
vector machine objective:

n
minimizey, max {1 — yinxl-, 0} .
=1

1

Defining the function e(z) = 1{z < 1}, we can compute that the gradient of
the SVM cost is

n

-Y e(yiwTx;)yix; .
i=1
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Hence, gradient descent for this ERM problem would follow the iteration

n
Wiy = Wt + & Z e(yiw” x;)yix;
i=1

Although similar, note that this isn’t quite the perceptron method yet. The
time to compute one gradient step is O(n) as we sum over all n inner

products. We will soon turn to the stochastic gradient method that has
constant iteration complexity and will subsume the perceptron algorithm.

Logistic regression

Logistic regression is equivalent to using the loss function

loss(y, y) = log (1 +exp(—yYy)) -

Note that even though this loss has a probabilistic interpretation, it can also
just be seen as an approximation to the error-counting zero-one loss.

Least squares classification

Least squares classification uses the loss function

loss(7,y) = 3(7 —y)*.

Though this might seem like an odd approximation to the error-counting
loss, it leads to the maximum a posteriori (MAP) decision rule when mini-
mizing the population risk. Recall the MAP rule selects the label that has
highest probability conditional on the observed data.

It is helpful to keep the next picture in mind that summarizes how each
of these different loss functions approximate the zero-one loss. We can
ensure that the squared loss is an upper bound on the zero-one loss by
dropping the factor 1/2.

Insights from quadratic functions

Quadratic functions are the prototypical example that motivate algorithms
for differentiable optimization problems. Though not all insights from
quadratic optimization transfer to more general functions, there are several
key features of the dynamics of iterative algorithms on quadratics that are
notable. Moreover, quadratics are a good test case for reasoning about
optimization algorithms: if a method doesn’t work well on quadratics, it
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Figure 5: Three different convex losses compared with the zero-one loss.

typically won’t work well on more complicated nonlinear optimization
problems. Finally, note that ERM with linear functions and a squared loss
is a quadratic optimization problem, so such problems are indeed relevant
to machine learning practice.

The general quadratic optimization problem takes the form

O (w) = Jw'Qw — pTw +r,

where Q is a symmetric matrix, p is a vector, and r is a scalar. The scalar r
only affects the value of the function, and plays no role in the dynamics of
gradient descent. The gradient of this function is

Vo(w) =Qw—p.

The stationary points of ® are the w where Qw = p. If Q is full rank, there
is a unique stationary point.
The gradient descent algorithm for quadratics follows the iterations

Wi = wr — a(Quwy — p) .
If we let w, be any stationary point of ®, we can rewrite this iteration as
Weir — Wy = (I —aQ)(wr —wy) .

Unwinding the recursion yields the “closed form” formula for the gradient
descent iterates
w —we = (I — Q)" (wo — w,).
This expression reveals several possible outcomes. Let Ay > Ay > ... >
A4 denote the eigenvalues of Q. These eigenvalues are real because Q is



symmetric. First suppose that Q has a negative eigenvalue A; < 0 and v
is an eigenvector such that Qu = Azuv. Then (I —aQ)'v = (1 + a|Ay|)lo
which tends to infinity as t grows. This is because 1+ «|A,| is greater than 1
if &« > 0. Hence, if (v, wy — w,) # 0, gradient descent diverges. For a random
initial condition wg, we’d expect this dot product will not equal zero, and
hence gradient descent will almost surely not converge from a random
initialization.

In the case that all of the eigenvalues of Q are positive, then choosing a
greater than zero and less than 1/A; will ensure that 0 <1 — aA; < 1 for
all k. In this case, the gradient method converges exponentially quickly to
the optimum w, :

lw 41 = wi| = [(I = 2Q) (ws — w, )|

A
fqu—agwwrwwng( —iauwrwmw

When the eigenvalues of Q are all positive, the function ® is strongly convex.
Strongly convex functions turn out to be the set of functions where gradient
descent with a constant step size converges exponentially from any starting
point.

Note that the ratio of A; to A; governs how quickly all of the components
converge to 0. Defining the condition number of Q to be x = A;/A; and
setting the step size « = 1/A, gives the bound

t
e =l < (1=x71) flwwg — ]|

This rate reflects what happens in practice: when there are small singular
values, gradient descent tends to bounce around and oscillate as shown
in the figure below. When the condition number of Q is small, gradient
descent makes rapid progress towards the optimum.

There is one final case that’s worth considering. When all of the eigen-
values of Q are nonnegative but some of them are zero, the function ® is
convex but not strongly convex. In this case, exponential convergence to a
unique point cannot be guaranteed. In particular, there will be an infinite
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number of global minimizers of ®. If w, is a global minimizer and v is any
vector with Qv = 0, then w, + v is also a global minimizer. However, in the
span of the eigenvectors corresponding to positive eigenvalues, gradient
descent still converges exponentially. For general convex functions, it will
be important to consider different parts of the parameter space to fully
understand the dynamics of gradient methods.

Stochastic gradient descent

The stochastic gradient method is one of the most popular algorithms for
contemporary data analysis and machine learning. It has a long history and
has been “invented” several times by many different communities (under
the names “least mean squares,” “backpropagation,” “online learning,”
and the “randomized Kaczmarz method”). Most researchers attribute this
algorithm to the initial work of Robbins and Monro from 1951 who solved
a more general problem with the same method."

Consider again our main goal of minimizing the empirical risk with
respect to a vector of parameters w, and consider the simple case of linear
classification where w is d-dimensional and

flx;w) = wai.

The idea behind the stochastic gradient method is that since the gradient
of a sum is the sum of the gradients of the summands, each summand
provides useful information about how to optimize the total sum. Stochastic
gradient descent minimizes empirical risk by following the gradient of the
risk evaluated on a single, random example.

Stochastic Gradient Descent
e Start from an initial point wy € R".
e Ateachstept=0,1,2,...

— Choose a step size a; > 0 and random index i € [n].
- Set wy1 = wy — a;Vy,loss(f(x;;wt),yi)

The intuition behind this method is that by following a descent direction
in expectation, we should be able to get close to the optimal solution if we
wait long enough. However, it’s not quite that simple. Note that even when
the gradient of the sum is zero, the gradients of the individual summands
may not be. The fact that w, is no longer a fixed point complicates the
analysis of the method.

11



Example: revisiting the perceptron

Let’s apply the stochastic gradient method to the support vector machine
cost loss. We initialize our half-space at some wy. At iteration ¢, we choose
a random data point (x;,y;) and update

y,-xi if yiw;rxi S 1
0 otherwise

wt+1:wt+77{

As we promised earlier, we see that using stochastic gradient descent
to minimize empirical risk with a hinge loss is completely equivalent to
Rosenblatt’s Perceptron algorithm.

Example: computing a mean

Let’s now try to examine the simplest example possible. Consider applying
the stochastic gradient method to the function

n

zi Z(w - ]/z')z,

ni3

where v, ...,y, are fixed scalars. This setup corresponds to a rather simple
classification problem where the x features are all equal to 1. Note that the
gradient of one of the increments is

Vioss(f (x;;w), ¥) = w© — ;.

To simplify notation, let’s imagine that our random samples are coming
to us in order {1,2,3,4,...} Start with w; = 0, use the step size ay = 1/k.
We can then write out the first few equations:

Wy =w1 —wW1tY1 =W

1 1 1
w3=w2—§(w2—y2)=§y1+§y2

1 1 1 1
W4=ZU3—§(w3—y3)=§y1+§yz+§y3

Generalizing from here, we can conclude by induction that

k—1 1 1&
Wit = (=5 wk+Eyk:E.Zyi'

After n steps, w, is the mean of the y;, and you can check by taking a
gradient that this is indeed the minimizer of the ERM problem.

12



The 1/k step size was the originally proposed step size by Robbins and
Monro. This simple example justifies why: we can think of the stochastic
gradient method as computing a running average. Another motivation for
the 1/k step size is that the steps tend to zero, but the path length is infinite.

Moving to a more realistic random setting where the data might arrive
in any order, consider what happens when we run the stochastic gradient
method on the function

R(w) = }E[(w - Y)?].

Here Y is some random variable with mean y and variance 2. If we run
for k steps with i.i.d. samples Y; at each iteration, the calculation above
reveals that

1

Wy =

k
»n
i=1

The associated cost is
1 1 o1 1
_* 2 - _+ 2 12
R(wy) = 5 E (k i_zlY, Y) 557 T30
Compare this to the minimum achievable risk R,. Expanding the definition

R(w) = %]E[w2 —2Yw + Yz] = %wz — uw + %(72 + %yz,

we find that the minimizer is w, = u. Its cost is

1
_m:ngziﬁ,

and after n iterations, we have the expected optimality gap

L 5
E [R(w,) — Ry] = 5,7 -

This is the best we could have achieved using any estimator for w, given the
collection of random draws. Interestingly, the incremental “one-at-a-time”
method finds as good a solution as one that considers all of the data to-
gether. This basic example reveals a fundamental limitation of the stochastic
gradient method: we can’t expect to generically get fast convergence rates
without additional assumptions. Statistical fluctuations themselves prevent
the optimality gap from decreasing exponentially quickly.

This simple example also helps give intuition on the convergence as we
sample stochastic gradients. The figure below plots an example of each
individual term in the summand, shaded with colors of blue to distinguish

13
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Figure 6: Plot of the different increments of 5- Y, (w — y;)2. The red star
denotes the optimal solution.

each term. The minimizing solution is marked with a red star. To the far
left and far right of the figure, all of the summands will have gradients
pointing in the same direction to the solution. However, as our iterate gets
close to the optimum, we will be pointed in different directions depending
on which gradient we sample. By reducing the step size, we will be more
likely to stay close and eventually converge to the optimal solution.

Example: Stochastic minimization of a quadratic function

Let’s consider a more general version of stochastic gradient descent that
follows the gradient plus some unbiased noise. We can model the algorithm
as minimizing a function ®(w) where we follow a direction V®(w) + v
where v is a random vector with mean zero and E[||v||?] = ¢?. Consider
the special case where ®(w) is a quadratic function

d(w) = %wTQw —plw+r.
Then the iterations take the form
Wi = wr —a(Qwr — p+ 1) .

Let’s consider what happens when Q is positive definite with maximum
eigenvalue A; and minimum eigenvalue A; > 0. Then, if w, is a global
minimizer of ®, we can again rewrite the iterations as

Wi — Wy = (I — Q) (wr — wy) — avy.

Since we assume that the noise v4 is independent of all of the wy with k <'t,
we have

Elllwee — wil?] < 11— aQl* Elllwe — w.|?] + a’c?.

14



which looks like the formula we derived for quadratic functions, but now
with an additional term from the noise. Assuming a < 1/A;, we can
unwind this recursion to find

wo?

Ell[wr — w.]|?] < (1 — adg)*lwo — w.||* + A

From this expression, we see that gradient descent converges exponentially
quickly to some ball around the optimal solution. The smaller we make «,
the closer we converge to the optimal solution, but the rate of convergence
is also slower for smaller «. This tradeoff motivates many of the step size
selection rules in stochastic gradient descent. In particular, it is common to
start with a large step size and then successively reduce the step size as the
algorithm progresses.

Tricks of the trade

In this section, we describe key engineering techniques that are useful for
tuning the performance of stochastic gradient descent. Every machine
learning practitioner should know these simple tricks.

Shuffling. Even though we described the stochastic gradient method a
sampling each gradient with replacement from the increments, in practice
better results are achieved by simply randomly permuting the data points
and then running SGD in this random order. This is called “shuffling,” and
even a single shuffle can eliminate the pathological behavior we described
in the example with highly correlated data. Recently, beginning with work
by Giirbiizbalaban et al., researchers have shown that in theory, shuffling
outperforms independent sampling of increments.> The arguments for
without-replacement sampling remain more complicated than the with-
replacement derivations, but optimal sampling for SGD remains an active
area of optimization research.

Step size selection. Step size selection in SGD remains a hotly debated
topic. We saw above a decreasing stepsize 1/k solved our simple one
dimensional ERM problem. However, a rule that works for an unreasonable
number of cases is to simply pick the largest step size which does not result
in divergence. This step will result in a model that is not necessarily optimal,
but significantly better than initialization. By slowly reducing the step size
from this initial large step size to successively smaller ones, we can zero in
on the optimal solution.

Step decay. The step size is usually reduced after a fixed number of
passes over the training data. A pass over the entire dataset is called an
epoch. In an epoch, some number of iterations are run, and then a choice is
made about whether to change the step size. A common strategy is to run
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with a constant step size for some fixed number of iterations T, and then
reduce the step size by a constant factor <. Thus, if our initial step size is &,
on the kth epoch, the step size is ay*~1. This method is often more robust
in practice than the diminishing step size rule. For this step size rule, a
reasonable heuristic is to choose 7y between 0.8 and 0.9. Sometimes people
choose rules as aggressive as v = 0.1.

Another possible schedule for the step size is called epoch doubling. In
epoch doubling, we run for T steps with step size «, then run 2T steps with
step size a/2, and then 4T steps with step size «/4 and so on. Note that
this provides a piecewise constant approximation to the function «/k.

Minibatching. A common technique used to take advantage of paral-
lelism is called minibatching. A minibatch is an average of many stochastic
gradients. Suppose at each iteration we sample a batchy with m data points.
The update rule then becomes

1
W1 = Wre — Mk Z Viwloss(f (xj;w), yj) -

j€batchy

Minibatching reduces the variance of the stochastic gradient estimate of
the true gradient, and hence tends to be a better descent direction. Of
course, there are tradeoffs in total computation time versus the size of the
minibatch, and these typically need to be handled on a case by case basis.

Momentum. Finally, we note that one can run stochastic gradient
descent with momentum. Momentum mixes the current gradient direction
with the previously taken step. The idea here is that if the previous weight
update was good, we may want to continue moving along this direction.
The algorithm iterates are defined as

Wi = Wi — a8k (wi) + Bwy + wr—1),

where g denotes a stochastic gradient. In practice, these methods are very
successful. Typical choices for B here are between 0.8 and 0.95. Momentum
can provide significant accelerations, and should be considered an option
in any implementation of SGM.

The SGD quick start guide

Newcomers to stochastic gradient descent often find all of these design
choices daunting, and it’s useful to have simple rules of thumb to get going.
We recommend the following:

1. Pick as large a minibatch size as you can given your computer’s RAM.
2. Set your momentum parameter to either o or 0.9. Your call!
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3. Find the largest constant stepsize such that SGD doesn’t diverge. This
takes some trial and error, but you only need to be accurate to within
a factor of 10 here.

4. Run SGD with this constant stepsize until the empirical risk plateaus.

5. Reduce the stepsize by a constant factor (say, 10)

6. Repeat steps 4 and 5 until you converge.

While this approach may not be the most optimal in all cases, it’s a great
starting point and is good enough for probably 9go% of applications we’ve
encountered.

Analysis of the stochastic gradient method

We now turn to a theoretical analysis of the general stochastic gradient
method. Before we proceed, let’s set up some conventions. We will assume
that we are trying to minimize a convex function R : R — R. Let w,
denote any optimal solution of R. We will assume we gain access at every
iteration to a stochastic function g(w;¢) such that

Eg[g(w; )] = VR(w).

Here ¢ is a random variable which determines what our direction looks like.
We additionally assume that these stochastic gradients are bounded so there
exists a non-negative constants B such that

18(w; E)|l < B.

We will study the stochastic gradient iteration

Wi = W — a4 (we; &) -

Throughout, we will assume that the sequence {{;} is selected i.i.d. from
some fixed distribution.
We begin by expanding the distance to the optimal solution:

Wi — wil|* = |lwr — argi(we &) — wa|?

= llwr — w.l|* — 20 (1 (w; &), wr — wi) + afl|ge(we; &) |1

We deal with each term in this expansion separately. First note that if
we apply the law of iterated expectation

E[(g¢(we; &), w — wi)] = E [Eg, [(g(wy; &), wr — wy) | Co, - .., Ci-1]]

= E [(Eg,[g:(wt; &) | Go, - -+, Gro1l, w06 — w4 ]
—E [<v1z1(7wt),wt —w)] .



Here, we are simply using the fact that ¢{; being independent of all of
the preceding ¢; implies that it is independent of w;. This means that
when we iterate the expectation, the stochastic gradient can be replaced by
the gradient. The last term we can bound using our assumption that the
gradients are bounded:

]E[”g(wt}Ct)HZ] < B?
Letting 0; := E[[|w; — w|?], this gives
Or11 < 6 — 204 E [(VR(wy), wy — wy)] + oc%Bz,

Now let A; = E]t':o a; denote the sum of all the step sizes up to iteration .
Also define the average of the iterates weighted by the step size

t
- -1
Wy = /\t Z oc]w] .
j=0

We are going to analyze the deviation of R(@;) from optimality.

Also let pg = ||wo — wi||. po is the initial distance to an optimal solution.
It is not necessarily a random variable.

To proceed, we just expand the following expression:

T
E [R (1) — R(wy)] < E |AL] Z(;)at(R(wf) — R(wy))
=

T
< )L:Fl ;)atlE[(VR(xt),wt — Wy)]

T
<AZEY 10 — 6r41) + Sa?B?
t=0

_ 60—t + BT oa]
2MAT
T
T2y

Here, the first inequality follows because R is convex (the line segments lie
above the function, i.e., R(w,) > R(w;) + (VR(w;), wsx — wy)). The second
inequality uses the fact that gradients define tangent planes to R and always
lie below the graph of R, and the third inequality uses the recursion we
derived above for 4;.

The analysis we saw gives the following result.3
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Theorem 1. Suppose we run the SGM on a convex function R with minimum
value R, for T steps with step size a. Define

fopr = 0 ,
P BVT Kopt

Then, we have the bound

B
E[R(w7) — R,] < (%9+%9 1) %

This proposition asserts that we pay linearly for errors in selecting the
optimal constant step size. If we guess a constant step size that is two-times
or one-half of the optimal choice, then we need to run for at most twice as
many iterations. The optimal step size is found by minimizing our upper
bound on the suboptimality gap. Other step sizes could also be selected
here, including diminishing step size. But the constant step size turns out
to be optimal for this upper bound.

What are the consequences for risk minimization? First, for empirical risk,
assume we are minimizing a convex loss function and searching for a linear
predictor. Assume further that there exists a model with zero empirical risk.
Let C be the maximum value of the gradient of the loss function, D be the
largest norm of any example x; and let p denote the minimum norm w such
that Rg[w]| = 0. Then we have

CDp
VT

we see that with appropriately chosen step size, the stochastic gradient
method converges at a rate of 1/ VT , the same rate of convergence observed
when studying the one-dimensional mean computation problem. Again,
the stochasticity forces us into a slow, 1/+/T rate of convergence, but high
dimensionality does not change this rate.

Second, if we only operate on samples exactly once, and we assume our
data is i.i.d., we can think of the stochastic gradient method as minimizing
the population risk instead of the empirical risk. With the same notation,
we’ll have

E[Rs[@r]] <

_ CD
E[R[@r]] — R, < Tj{).
The analysis of stochastic gradient gives our second generalization bound of
the book. What it shows is that by optimizing over a fixed set of T data
points, we can get a solution that will have low cost on new data. We will
return to this observation in the next chapter.
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Implicit convexity

We have thus far focused on convex optimization problems, showing that
gradient descent can find global minima with modest computational means.
What about nonconvex problems? Nonconvex optimization is such a general
class of problems that in general it is hard to make useful guarantees.
However, ERM is a special optimization problem, and its structure enables
nonconvexity to enter in a graceful way.

As it turns out there’s a “hidden convexity” of ERM problems which
shows that the predictions should converge to a global optimum even if
we can’t analyze to where exactly the model converges. We will show
this insight has useful benefits when models are overparameterized or
nonconvex.

Suppose we have a loss function loss that is equal to zero when iy = y
and is nonnegative otherwise. Suppose we have a generally parameterized
function class {f(x;w): w € R?} and we aim to find parameters w that
minimize the empirical risk. The empirical risk

Rofo] =, 1 foss(f (), 1)

is bounded below by 0. Hence if we can find a solution with f(x;;w) = y; for
all i, we would have a global minimum not a local minimum. This is a trivial
observation, but one that helps focus our study. If during optimization all
predictions f(x;; w) converge to y; for all i, we will have computed a global
minimizer. For the sake of simplicity, we specialize to the square loss in this

section:

loss(f (xiyw), yi) = 5 (f (xizw) — yi)?
The argument we develop here is inspired by the work of Du et al. who
use a similar approach to rigorously analyze the convergence of two layer
neural networks.4 Similar calculations can be made for other losses with
some modifications of the argument.

Convergence of overparameterized linear models

Let’s first consider the case of linear prediction functions

flgw) =wlx.

Define
Y1 x1T
y=|: and X=1:
Yn XZ
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We can then write the empirical risk objective as
Refw] = 5, |Xw =y
SU T o A
The gradient descent update rule has the form
Wiy = wy — aX (Xw —y).

We pull the scaling factor 1/n into the step size for notational convenience.
Now define the vector of predictions

f(x1;wt)

Yt = :
f(xn; we)

For the linear case, the predictions are given by i, = Xwy. We can use this
definition to track the evolution of the predictions instead of the parameters w.
The predictions evolve according to the rule

Vi1 =9 —aXX (7t —v).

This looks a lot like the gradient descent algorithm applied to a strongly
convex quadratic function that we studied earlier. Subtracting y from both
sides and rearranging shows

Y1 —y=I—aXX") (7 —v).

This expression proves that as long as XX is strictly positive definite and «
is small enough, then the predictions converge to the training labels. Keep in
mind that X is n X d and a model is overparameterized if d > n. The n x n
matrix XX has a chance of being strictly positive definite in this case.

When we use a sufficiently small and constant step size a, our predictions
converge at an exponential rate. This is in contrast to the behavior we saw for
gradient methods on overdetermined problems. Our general analysis of the
weights showed that the convergence rate might be only inverse polynomial
in the iteration counter. In the overparameterized regime, we can guarantee
the predictions converge more rapidly than the weights themselves.

The rate in this case is governed by properties of the matrix X. As we
have discussed we need the eigenvalues of XX to be positive, and we’d
ideally like that the eigenvalues are all of similar magnitude.

First note that a necessary condition is that d, the dimension, must be
larger than 1, the number of data points. That is, we need to have an over-
parameterized model in order to ensure exponentially fast convergence of
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the predictions. We have already seen that such overparameterized models
make it possible to interpolate any set of labels and to always force the
data to be linearly separable. Here, we see further that overparameteriza-
tion encourages optimization methods to converge in fewer iterations by
improving the condition number of the data matrix.

Overparameterization can also help accelerate convergence. Recall that
the eigenvalues of XX are the squares of the singular values of X. Let us
write out a singular value decomposition X = USVT, where S is a diagonal
matrix of singular values (0y,...,0,). In order to improve the condition
number of this matrix, it suffices to add a feature that is concentrated in
the span of the singular vectors with small singular values. How to find
such features is not always apparent, but does give us a starting point as to
where to look for new, informative features.

Convergence of nonconvex models

Surprisingly, this analysis naturally extends to nonconvex models. With
some abuse of notation, let ¥ = f(x;w) € R" denote the n predictions of
some nonlinear model parameterized by the weights w on input x. Our
goal is to minimize the squared loss objective

1
S fGs) -yl

Since the model is nonlinear this objective is no longer convex. Nonetheless
we can mimic the analysis we did previously for overparameterized linear
models.

Running gradient descent on the weights gives

w1 = wi —aDf(x;we) (r —y),

where 7; = f(x;w;) and Df is the Jacobian of the predictions with respect
to w. That is, Df(x; w) is the d x n matrix of first order derivatives of the
function f(x;w) with respect to w. We can similarly define the Hessian
operator H(w) to be the n x d x d array of second derivatives of f(x;w). We
can think of H(w) as a quadratic form that maps pairs of vectors (u,v) €
R%*4 to R™. With these higher order derivatives, Taylor’s theorem asserts

Vi1 = f(x, wey1)
= f(x,we) + Df(x;wy) T (weq — wy)

1
+ /0 H(wt + s(wppq — wy) ) (Wi1 — Wr, W1 — wy)ds .
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Since wy are the iterates of gradient descent, this means that we can write
the prediction as

Jee1 = G — aDf (x; 1) 'Df (x;wy) (7 — y) + ae,

where

e = rx/ol H(wt +s(wiy1 —wt)) (Df (x;04) (5 — ), Df (x;01) (: — y)) ds.

Subtracting the labels y from both sides and rearranging terms gives the
recursion

Jrr1 —y = (I — aDf (x;ws) 'Df (x;w01)) (i — y) + ey

If €; vanishes, this shows that the predictions again converge to the training
labels as long as the eigenvalues of Df (x; w;) "D f(x; w;) are strictly positive.
When the error vector ¢; is sufficiently small, similar dynamics will occur.
We expect €; to not be too large because it is quadratic in the distance of y;
to y and because it is multiplied by the step size & which can be chosen to
be small.

The nonconvexity isn’t particularly disruptive here. We just need to
make sure our Jacobians have full rank most of the time and that our steps
aren’t too large. Again, if the number of parameters are larger than the
number of data points, then these Jacobians are likely to be positive definite
as long as we’ve engineered them well. But how exactly can we guarantee
that our Jacobians are well behaved? We can derive some reasonable ground
rules by unpacking how we compute gradients of compositions of functions.
More on this follows in our chapter on deep learning.

Regularization

The topic of reqularization belongs somewhere between optimization and
generalization and it’s one way of connecting the two. Hence, we will
encounter it in both chapters. Indeed, one complication with optimization
in the overparameterized regime is that there is an infinite collection of
models that achieve zero empirical risk. How do we break ties between
these and which set of weights should we prefer?

To answer this question we need to take a step back and remember that
the goal of supervised learning is not just to achieve zero training error. We
also care about performance on data outside the training set, and having
zero loss on its own doesn’t tell us anything about data outside the training
set.
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As a toy example, imagine we have two sets of data Xiin and Xiest
where Xirain has shape n x d and Xiest is m X d. Let Yirain be the training
labels and let g be an m-dimensional vector of random labels. Then if d >
(m + n) we can find weights w such that

That is, these weights would produce zero error on the training set, but
error no better than random guessing on the testing set. That’s not desired
behavior! Of course this example is pathological, because in reality we
would have no reason to fit random labels against the test set when we
create our model.

The main challenge in supervised learning is to design models that
achieve low training error while performing well on new data. The main
tool used in such problems is called regqularization. Regularization is the
general term for taking a problem with infinitely many solutions and biasing
its solution towards a smaller subset of solution space. This is a highly
encompassing notion.

Sometimes regularization is explicit insofar as we have a desired property
of the solution in mind which we exercise as a constraint on our optimization
problem. Sometimes regularization is implicit insofar as algorithm design
choices lead to a unique solution, although the properties of this solution
might not be immediately apparent.

Here, we take an unconventional tack of working from implicit to explicit,
starting with stochastic gradient descent.

Implicit reqularization by optimization

Consider again the linear case of gradient descent or stochastic gradient
descent
Wiy = Wi — kerXy,

where e¢; is the gradient of the loss at the current prediction. Note that if we
initialize wy = 0, then w; is always in the span of the data. This can be seen
by simple induction. This already shows that even though general weights
lie in a high dimensional, SGD searches over a space with dimension at

most 1, the number of data points.

Now suppose we have a nonnegative loss with Blo%‘(zz,y) = 0 if and only

if y = z. This condition is satisfied by the square loss, but not hinge and
logistic losses. For such losses, at optimality we have for some vector v that:

1. Xw = y, because we have zero loss.
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2. w = XTv, because we are in the span of the data.

Under the mild assumption that our examples are linearly independent,
we can combine these equations to find that

w=XT(xx")"ly.

That is, when we run stochastic gradient descent we converge to a very
specific solution. Even though we were searching through an n-dimensional
space, we converge to a unique point in this space.

This special w is the minimum Euclidean norm solution of Xw = y. In
other words, out of all the linear prediction functions that interpolate the
training data, SGD selects the solution with the minimal Euclidean norm.
To see why this solution has minimal norm, suppose that @ = X'a + v
with v orthogonal to all x;. Then we have

X = XX o+ Xv = XX a.

Which means & is completely determined and hence @ = X” (XXT)~ 1y + v.
But now
1)1 = 1XT (XXT) "yl + [[o]>.

Minimizing the right hand side shows that v must equal zero.

We now turn to showing that such minimum norm solutions have
important robustness properties that suggest that they will perform well
on new data. In the next chapter, we will prove that these methods are
guaranteed to perform well on new data under reasonable assumptions.

Margin and stability

Consider a linear predictor that makes no classification errors and hence
perfectly separates the data. Recall that the decision boundary of this predictor
is the hyperplane B = {z : w'z = 0} and the margin of the predictor is the
distance of the decision boundary from to data:
margin(w) = mindist (x;, B) .
1

Since we're assuming that w correctly classifies all of the training data, we
can write the margin in the convenient form

T
yiw X

margin(w) = miin Tl

Ideally, we’d like our data to be far away from the boundary and hence
we would like our predictor to have large margin. The reasoning behind
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this desideratum is as follows: If we expect new data to be similar to the
training data and the decision boundary is far away from the training data,
then it would be unlikely for a new data point to lie on the wrong side of
the decision boundary. Note that margin tells us how large a perturbation in
the x; can be handled before a data point is misclassified. It is a robustness
measure that tells us how sensitive a predictor is to changes in the data
itself.

Let’s now specialize margin to the interpolation regime described in the
previous section. Under the assumption that we interpolate the labels so
that wlx; = yi, we have

margin(w) = ||w| .

If we want to simultaneously maximize margin and interpolate the data,
then the optimal solution is to choose the minimum norm solution of Xw =
y. This is precisely the solution found by SGD and gradient descent.

Note that we could have directly tried to maximize margin by solving
the constrained optimization problem

minimize ||wl|?
subject to y;wTx; > 1.

This optimization problem is the classic formulation of the support vector
machine. The support vector machine is an example of explicit regularization.
Here we declare exactly which solution we’d like to choose given that our
training error is zero. Explicit regularization of high dimensional models is
as old as machine learning. In contemporary machine learning, however, we
often have to squint to see how our algorithmic decisions are regularizing.
The tradeoff is that we can run faster algorithms with implicit regularizers.
But it’s likely that revisiting classic regularization ideas in the context of
contemporary models will lead to many new insights.

The representer theorem and kernel methods

As we have discussed so far, it is common in linear methods to restrict
the search space to the span of the data. Even when 4 is large (or even
infinite), this reduces the search problem to one in an n-dimensional space.
It turns out that under broad generality, solutions in the span of the data
are optimal for most optimization problems in prediction. Here, we make
formal an argument we first introduced in our discussion of features: for
most empirical risk minimization problems, the optimal model will lie in
the span of the training data.
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Consider the penalized ERM problem

n
minimize; ) loss(w™x;, y;) + Al w||?
i=1

Here A is called a reqularization parameter. When A = 0, there are an
infinite number of w that minimize the ERM problem. But for any A > 0,
there is a unique minimizer. The term regularization refers to adding
some prior information to an optimization problem to make the optimal
solution unique. In this case, the prior information is explicitly encoding
that we should prefer w with smaller norms if possible. As we discussed
in our chapter on features, smaller norms tend to correspond to simpler
solutions in many feature spaces. Moreover, we just described that minimum
norm solutions themselves could be of interest in machine learning. A
regularization parameter allows us to explicitly tune the norm of the optimal
solution.

For our penalized ERM problem, using the same argument as above, we
can write any w as

w=X'B+v

for some vectors B and v with v’ x; = 0 for all i. Plugging this equation into
the penalized ERM problem yields

. 1
minimizeg Y " loss(BT Xxi, yi) + A XTBII + Allo||.
i=1

Now we can minimize with respect to v, seeing that the only option is to
set v = 0. Hence, we must have that the optimum model lies in the span of
the data:

w=X'B

This derivation is commonly called the representer theorem in machine
learning. As long as the cost function only depends on function evalu-
ations f(x;) = w’x; and the cost increases as a function of ||w||, then the
empirical risk minimizer will lie in the span of the data.

Define the kernel matrix of the training data K = XX'. We can then
rewrite the penalized ERM problem as

n
minimizeﬁ% Y loss(e] KB, yi) + AB'KB,
i=1

where ¢; is the standard Euclidean basis vector. Hence, we can solve the
machine learning problem only using the values in the matrix K, searching
only for the coefficients B in the kernel expansion.
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The representer theorem (also known as the kernel trick) tells us that
most machine learning problems reduce to a search in n dimensional
space, even if the feature space has much higher dimension. Moreover, the
optimization problems only care about the values of dot products between
data points. This motivates the use of the kernel functions described in
our discussion of representation: kernel functions allow us to evaluate
dot products of vectors in high dimensional spaces often without ever
materializing the vectors, reducing high-dimensional function spaces to the
estimation of weightings of individual data points in the training sample.

Squared loss methods and other optimization tools

This chapter focused on gradient methods for minimizing empirical risk,
as these are the most common methods in contemporary machine learning.
However, there are a variety of other optimization methods that may be use-
ful depending on the computational resources available and the particular
application in question.

There are a variety of optimization methods that have proven fruitful
in machine learning, most notably constrained quadratic programming for
solving support vector machines and related problems. In this section we
highlight least squares methods which are attractive as they can be solved
by solving linear systems. For many problems, linear systems solves are
faster than iterative gradient methods, and the computed solution is exact
up to numerical precision, rather than being approximate.

Consider the optimization problem

minimizey, % Yy —wlx)?.

The gradient of this loss function with respect to w is given by

n
— Z(yl — wal-)xi .
i=1

1
If we let y denote the vector of y labels and X denote the n x d matrix

T
Tl
X
X= |2

Sy

X

then setting the gradient of the least squares cost equal to zero yields the
solution
w= (XTX)"1xTy.
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For many problems, it is faster to compute this closed form solution than it
is to run the number of iterations of gradient descent required to find a w
with small empirical risk.

Regularized least squares also has a convenient closed form solution.
The penalized ERM problem where we use a square loss is called the ridge
regression problem:

minimize,, % Y (yi — wai)2 + )\HWHZ

Ridge regression can be solved in the same manner as above, yielding the
optimal solution
w= (XTX+AI)"1XTy.

There are a few other important problems solvable by least squares. First,
we have the identity

(XTX +AL)1XT = XT(xxT 4+ A1) L.

this means that we can solve ridge regression either by solving a system
in d equations and d unknowns or n equations and n unknowns. In the
overparameterized regime, we’d choose the formulation with n parameters.
Moreover, as we described above, the minimum norm interpolating problem

minimize ||w||?
subject to wTx; = y;.

is solved by w = X(XXT)~1y. This shows that the limit as A goes to zero in
ridge regression is this minimum norm solution.

Finally, we note that for kernelized problems, we can simply replace
the matrix XXT with the appropriate kernel K. Hence, least squares for-
mulations are extensible to solve prediction problems in arbitrary kernel
spaces.

Chapter notes

Mathematical optimization is a vast field, and we clearly are only addressing
a very small piece of the puzzle. For an expanded coverage of the material
in this chapter with more mathematical rigor and implementation ideas, we
invite the reader to consult the recent book by Wright and Recht.>

The chapter focuses mostly on iterative, stochastic gradient methods.
Initially invented by Robbins and Monro for solving systems of equations
in random variables," stochastic gradient methods have played a key role in
pattern recognition since the Perceptron. Indeed, it was very shortly after
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Rosenblatt’s invention that researchers realized the Perceptron was solving a
stochastic approximation problem. Of course, the standard perceptron step
size schedule does not converge to a global optimum when the data is not
separable, and this lead to a variety of methods to fix the problem. Many
researchers employed the Widrow-Hoff “Least-Mean-Squares” rule which in
modern terms is minimizing the empirical risk associated with a square loss
by stochastic gradient descent.® Aizerman and his colleagues determined
not only how to apply stochastic gradient descent to linear functions, but
how to operate in kernel spaces as well.” Of course, all of these methods
were closely related to each other, but it took some time to put them all
on a unified footing. It wasn’t until the 1980s with a full understanding of
complexity theory, that optimal step sizes were discovered for stochastic
gradient methods by Nemirovski and Yudin.® More surprisingly, it was not
until 2007 that the first non-asymptotic analysis of the perceptron algorithm
was published.?

Interestingly, it wasn’t again until the early 2000s that stochastic gradi-
ent descent became the default optimization method for machine learning.
There tended to be a repeated cycle of popularity for the various optimiza-
tion methods. Global optimization methods like linear programming were
determined effective in the 1960s for pattern recognition problems,™ sup-
planting interest in stochastic descent methods. Stochastic gradient descent
was rebranded as back propagation in the 1980s, but again more global
methods eventually took center stage. Mangasarian, who was involved
in both of these cycles, told us in private correspondence that linear pro-
gramming methods were always more effective in terms of their speed of
computation and quality of solution.

Indeed this pattern was also followed in optimization. Nemirovski and
Nesterov did pioneering work in iterative gradient and stochastic gradient
methods . But they soon turned to developing the foundations of interior
point methods for solving global optimization problems.™ In the 2000s,
they republished their work on iterative methods, leading to a revolution in
machine learning.

It’s interesting to track this history and forgetting in machine learning.
Though these tools are not new, they are often forgotten and replaced. It’s
perhaps time to revisit the non-iterative methods in light of this.
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