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Preface

In its conception, our book is both an old take on something new and a new
take on something old.

Looking at it one way, we return to the roots with our emphasis on
pattern classification. We believe that the practice of machine learning today
is surprisingly similar to pattern classification of the 1960s, with a few
notable innovations from more recent decades.

This is not to understate recent progress. Like many, we are amazed
by the advances that have happened in recent years. Image recognition
has improved dramatically. Even small devices can now reliably recognize
speech. Natural language processing and machine translation have made
massive leaps forward. Machine learning has even been helpful in some
difficult scientific problems, such as protein folding.

However, we think that it would be a mistake not to recognize pattern
classification as a driving force behind these improvements. The ingenuity
behind many advances in machine learning so far lies not in a fundamen-
tal departure from pattern classification, but rather in finding new ways
to make problems amenable to the model fitting techniques of pattern
classification.

Consequently, the first few chapters of this book follow relatively closely
the excellent text “Pattern Classification and Scene Analysis” by Duda and
Hart, particularly, its first edition from 1973, which remains relevant today.
Indeed, Duda and Hart summarize the state of pattern classification in 1973,
and it bears a striking resemblance to the core of what we consider today
to be machine learning. We add new developments on representations,
optimization, and generalization, all of which remain topics of evolving,
active research.

Looking at it differently, our book departs in some considerable ways
from the way machine learning is commonly taught.

First, our text emphasizes the role that datasets play in machine learning.
A full chapter explores the histories, significance, and scientific basis of
machine learning benchmarks. Although ubiquitous and taken for granted
today, the datasets-as-benchmarks paradigm was a relatively recent devel-
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opment of the 1980s. Detailed consideration of datasets, the collection and
construction of data, as well as the training and testing paradigm, tend to
be lacking from theoretical courses on machine learning.

Second, the book includes a modern introduction to causality and the
practice of causal inference that lays to rest dated controversies in the field.
The introduction is self-contained, starts from first principles, and requires
no prior commitment intellectually or ideologically to the field of causality.
Our treatment of causality includes the conceptual foundations, as well
as some of the practical tools of causal inference increasingly applied in
numerous applications. It’s interesting to note that many recent causal
estimators reduce the problem of causal inference in clever ways to pattern
classification. Hence, this material fits quite well with the rest of the book.

Third, our book covers sequential and dynamic models thoroughly.
Though such material could easily fill a semester course on its own, we
wanted to provide the basic elements required to think about making deci-
sions in dynamic contexts. In particular, given so much recent interest in
reinforcement learning, we hope to provide a self-contained short introduc-
tion to the concepts underpinning this field. Our approach here follows
our approach to supervised learning: we focus on how we would make
decisions given a probabilistic model of our environment, and then turn to
how to take action when the model is unknown. Hence, we begin with a
focus on optimal sequential decision making and dynamic programming.
We describe some of the basic solution approaches to such problems, and
discuss some of the complications that arise as our measurement quality de-
teriorates. We then turn to making decisions when our models are unknown,
providing a survey of bandit optimization and reinforcement learning. Our
focus here is to again highlight the power of prediction. We show that
for most problems, pattern recognition can be seen as a complement to
teedback control, and we highlight how “certainty equivalent” decision
making—where we first use data to estimate a model and then use feedback
control acting as if this model were true—is optimal or near optimal in a
surprising number of scenarios.

Finally, we attempt to highlight in a few different places throughout the
potential harms, limitations, and social consequences of machine learning.
From its roots in World War II, machine learning has always been political.
Advances in artificial intelligence feed into a global industrial military
complex, and are funded by it. As useful as machine learning is for some
unequivocally positive applications such as assistive devices, it is also
used to great effect for tracking, surveillance, and warfare. Commercially
its most successful use cases to date are targeted advertising and digital
content recommendation, both of questionable value to society. Several
scholars have explained how the use of machine learning can perpetuate
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inequity through the ways that it can put additional burden on already
marginalized, oppressed, and disadvantaged communities. Narratives of
artificial intelligence also shape policy in several high stakes debates about
the replacement of human judgment in favor of statistical models in the
criminal justice system, health care, education, and social services.

There are some notable topics we left out. Some might find that the most
glaring omission is the lack of material on unsupervised learning. Indeed,
there has been a significant amount of work on unsupervised learning in
recent years. Thankfully, some of the most successful approaches to learning
without labels could be described as reductions to pattern recognition. For
example, researchers have found ingenious ways of procuring labels from
unlabeled data points, an approach called self supervision. We believe that
the contents of this book will prepare students interested in these topics
well.

The material we cover supports a one semester graduate introduction
to machine learning. We invite readers from all backgrounds. However,
mathematical maturity with probability, calculus, and linear algebra is
required. We provide a chapter on mathematical background for review.
Necessarily, this chapter cannot replace prerequisite coursework.

In writing this book, our goal was to balance mathematical rigor against
presenting insights we have found useful in the most direct way possible. In
contemporary learning theory important results often have short sketches,
yet making these arguments rigorous and precise may require dozens of
pages of technical calculations. Such proofs are critical to the community’s
scientific activities but often make important insights hard to access for
those not yet versed in the appropriate techniques. On the other hand,
many machine learning courses drop proofs altogether, thereby losing the
important foundational ideas that they contain. We aim to strike a balance,
including full details for as many arguments as possible, but frequently
referring readers to the relevant literature for full details.
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1
Introduction

“Reflections on life and death of those who in Breslau lived and died” is
the title of a manuscript that Protestant pastor Caspar Neumann sent to
mathematician Gottfried Wilhelm Leibniz in the late 17th century. Neumann
had spent years keeping track of births and deaths in his Polish hometown
now called Wroctaw. Unlike sprawling cities like London or Paris, Breslau
had a rather small and stable population with limited migration in and out.
The parishes in town took due record of the newly born and deceased.

Neumann’s goal was to find patterns in the occurrence of births and
deaths. He thereby sought to dispel a persisting superstition that ascribed
critical importance to certain climacteric years of age. Some believed it was
age 63, others held it was either the 49th or the 81st year, that particularly
critical events threatened to end the journey of life. Neumann recognized
that his data defied the existence of such climacteric years.

Leibniz must have informed the Royal Society of Neumann’s work. In
turn, the Society invited Neumann in 1691 to provide the Society with
the data he had collected. It was through the Royal Society that British
astronomer Edmund Halley became aware of Neumann’s work. A friend
of Isaac Newton’s, Halley had spent years predicting the trajectories of
celestial bodies, but not those of human lives.

After a few weeks of processing the raw data through smoothing and
interpolation, it was in the Spring of 1693 that Halley arrived at what
became known as Halley’s life table.

At the outset, Halley’s table displayed for each year of age, the number
of people of that age alive in Breslau at the time. Halley estimated that a
total of approximately 34000 people were alive, of which approximately
1000 were between the ages zero and one, 855 were between age one and
two, and so forth.

Halley saw multiple applications of his table. One of them was to
estimate the proportion of men in a population that could bear arms. To
estimate this proportion he computed the number of people between age 18
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Figure 1: Halley’s life table

and 56, and divided by two. The result suggested that 26% of the population
were men neither too old nor too young to go to war.

At the same time, King William III of England needed to raise money
for his country’s continued involvement in the Nine Years War raging from
1688 to 1697. In 1692, William turned to a financial innovation imported
from Holland, the public sale of life annuities. A life annuity is a financial
product that pays out a predetermined annual amount of money while the
purchaser of the annuity is alive. The king had offered annuities at fourteen
times the annual payout, a price too low for the young and too high for the
old.

Halley recognized that his table could be used to estimate the odds that
a person of a certain age would die within the next year. Based on this
observation, he described a formula for pricing an annuity that, expressed
in modern language, computes the sum of expected discounted payouts
over the course of a person’s life starting from their current age.

Ambitions of the 20th century

Halley had stumbled upon the fact that prediction requires no physics.
Unknown outcomes, be they future or unobserved, often follow patterns
found in past observations. This empirical law would become the basis of
consequential decision making for centuries to come.

On the heels of Halley and his contemporaries, the 18th century saw
the steady growth of the life insurance industry. The industrial revolution
fueled other forms of insurance sold to a population seeking safety in



tumultuous times. Corporations and governments developed risk models of
increasing complexity with varying degrees of rigor. Actuarial science and
financial risk assessment became major fields of study built on the empirical
law.

Modern statistics and decision theory emerged in the late 19th and early
20th century. Statisticians recognized that the scope of the empirical law
extended far beyond insurance pricing, that it could be a method for both
scientific discovery and decision making writ large.

Emboldened by advances in probability theory, statisticians modeled
populations as probability distributions. Attention turned to what a scien-
tist could say about a population by looking at a random draw from its
probability distribution. From this perspective, it made sense to study how
to decide between one of two plausible probability models for a population
in light of available data. The resulting concepts, such as true positive and
false positive, as well as the resulting technical repertoire, are in broad use
today as the basis of hypothesis testing and binary classification.

As statistics flourished, two other developments around the middle of the
2oth century turned out to be transformational. The works of Turing, Godel,
and von Neumann, alongside dramatic improvements in hardware, marked
the beginning of the computing revolution. Computer science emerged as a
scientific discipline. General purpose programmable computers promised a
new era of automation with untold possibilities.

World War II spending fueled massive research and development pro-
grams on radar, electronics, and servomechanisms. Established in 1940, the
United States National Defense Research Committee, included a division
devoted to control systems. The division developed a broad range of control
systems, including gun directors, target predictors, and radar-controlled
devices. The agency also funded theoretical work by mathematician Norbert
Wiener, including plans for an ambitious anti-aircraft missile system that
used statistical methods for predicting the motion of enemy aircraft.

In 1948, Wiener released his influential book Cybernetics at the same
time as Shannon released A Mathematical Theory of Communication. Both
proposed theories of information and communication, but their goals were
different. Wiener’s ambition was to create a new science, called cybernetics,
that unified communications and control in one conceptual framework.
Wiener believed that there was a close analogy between the human nervous
system and digital computers. He argued that the principles of control,
communication, and feedback could be a way not only to create mind-
like machines, but to understand the interaction of machines and humans.
Wiener even went so far as to posit that the dynamics of entire social systems
and civilizations could be understood and steered through the organizing
principles of cybernetics.



The zeitgeist that animated cybernetics also drove ambitions to create
artificial neural networks, capable of carrying out basic cognitive tasks.
Cognitive concepts such as learning and intelligence had entered research
conversations about computing machines and with it came the quest for
machines that learn from experience.

The 1940s were a decade of active research on artificial neural networks,
often called connectionism. A 1943 paper by McCulloch and Pitts formal-
ized artificial neurons and provided theoretical results about the universality
of artificial neural networks as computing devices. A 1949 book by Don-
ald Hebb pursued the central idea that neural networks might learn by
constructing internal representations of concepts.

Pattern classification

Around the mid 1950s, it seemed that progress on connectionism had
started to slow and would have perhaps tapered off had psychologist Frank
Rosenblatt not made a striking discovery.

Rosenblatt had devised a machine for image classification. Equipped
with 400 photosensors the machine could read an image composed of 20 by
20 pixels and sort it into one of two possible classes. Mathematically, the
Perceptron computes a linear function of its input pixels. If the value of
the linear function applied to the input image is positive, the Perceptron
decides that its input belongs to class 1, otherwise class -1. What made
the Perceptron so successful was the way it could learn from examples.
Whenever it misclassified an image, it would adjust the coefficients of its
linear function via a local correction.

Rosenblatt observed in experiments what would soon be a theorem. If a
sequence of images could at all be perfectly classified by a linear function,
the Perceptron would only make so many mistakes on the sequence before
it correctly classified all images it encountered.

Rosenblatt developed the Perceptron in 1957 and continued to publish
on the topic in the years that followed. The Perceptron project was funded
by the US Office of Naval Research, who jointly announced the project with
Rosenblatt in a press conference in 1958, that led to the New York Times to
exclaim:

The Navy revealed the embryo of an electronic computer that it
expects will be able to walk, talk, see, write, reproduce itself and
be conscious of its existence.*

This development sparked significant interest in perceptrons and rein-
vigorated neural networks research throughout the 1960s. By all accounts,
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the research in the decade that followed Rosenblatt’s work had essentially
all the ingredients of what is now called machine learning, specifically,
supervised learning.

Practitioners experimented with a range of different features and model
architectures, moving from linear functions to Perceptrons with multiple
layers, the equivalent of today’s deep neural networks. A range of variations
to the optimization method and different ways of propagating errors came
and went.

Theory followed closely behind. Not long after the invention came a
theorem, called mistake bound, that gave an upper bound on the number
of mistakes the Perceptron would make in the worst case on any sequence
of labeled data points that can be fit perfectly with a linear separator.

Today, we recognize the Perceptron as an instance of the stochastic
gradient method applied to a suitable objective function. The stochastic
gradient method remains the optimization workhorse of modern machine
learning applications.

Shortly after the well-known mistake bound came a lesser known the-
orem. The result showed that when the Perceptron succeeded in fitting
training data, it would also succeed in classifying unseen examples correctly
provided that these were drawn from the same distribution as the training
data. We call this generalization: Finding rules consistent with available data
that apply to instances we have yet to encounter.

By the late 1960s, these ideas from perceptrons had solidified into a
broader subject called pattern recognition that knew most of the concepts
we consider core to machine learning today. In 1939, Wald formalized the
basic problem of classification as one of optimal decision making when
the data is generated by a known probabilistic model. Researchers soon
realized that pattern classification could be achieved using data alone to
guide prediction methods such as perceptrons, nearest neighbor classifiers,
or density estimators. The connections with mathematical optimization
including gradient descent and linear programming also took shape during
the 1960s.

Pattern classification—today more popularly known as supervised
learning—built on statistical tradition in how it formalized the idea of
generalization. We assume observations come from a fixed data generat-
ing process, such as, samples drawn from a fixed distribution. In a first
optimization step, called training, we fit a model to a set of data points
labeled by class membership. In a second step, called testing, we judge
the model by how well it performs on newly generated data from the very
same process.

This notion of generalization as performance on fresh data can seem
mundane. After all, it simply requires the classifier to do, in a sense, more of



the same. We require consistent success on the same data generating process
as encountered during training. Yet the seemingly simple question of what
theory underwrites the generalization ability of a model has occupied the
machine learning research community for decades.

Pattern classification, once again

Machine learning as a field, however, is not a straightforward evolution
of the pattern recognition of the 1960s, at least not culturally and not
historically.

After a decade of perceptrons research, a group of influential researchers,
including McCarthy, Minsky, Newell, and Simon put forward a research
program by the name of artificial intelligence. The goal was to create human-
like intelligence in a machine. Although the goal itself was in many ways
not far from the ambitions of connectionists, the group around McCarthy
fancied entirely different formal techniques. Rejecting the numerical pattern
titting of the connectionist era, the proponents of this new discipline saw
the future in symbolic and logical manipulation of knowledge represented
in formal languages.

Artificial intelligence became the dominant academic discipline to deal
with cognitive capacities of machines within the computer science commu-
nity. Pattern recognition and neural networks research continued, albeit
largely outside artificial intelligence. Indeed, journals on pattern recognition
flourished during the 1970s.

During this time, artificial intelligence research led to a revolution in
expert systems, logic and rule based models that had significant industrial
impact. Expert systems were hard coded and left little room for adapt-
ing to new information. Al researchers interested in such adaptation and
improvement—learning, if you will—formed their own subcommunity, be-
ginning in 1981 with the first International Workshop on Machine Learning.
The early work from this community reflects the logic-based research that
dominated artificial intelligence at the time; the papers read as if of a dif-
ferent field than what we now recognize as machine learning research. It
was not until the late 1980s that machine learning began to look more like
pattern recognition, once again.

Personal computers had made their way from research labs into home
offices across wealthy nations. Internet access, if slow, made email a popular
form of communication among researchers. File transfer over the internet
allowed researchers to share code and datasets more easily.

Machine learning researchers recognized that in order for the discipline
to thrive it needed a way to more rigorously evaluate progress on concrete
tasks. Whereas in the 1950s it had seemed miraculous enough if training



errors decreased over time on any non-trivial task, it was clear now that
machine learning needed better benchmarks.

In the late 1980s, the first widely used benchmarks emerged. Then grad-
uate student David Aha created the UCI machine learning repository that
made several datasets widely available via FTP. Aiming to better quantify
the performance of Al systems, the Defense Advanced Research Projects
Agency (DARPA) funded a research program on speech recognition that
led to the creation of the influential TIMIT speech recognition benchmark.

These benchmarks had the data split into two parts, one called training
data, one called testing data. This split elicits the promise that the learning
algorithm must only access the training data when it fits the model. The
testing data is reserved for evaluating the trained model. The research
community can then rank learning algorithms by how well the trained
models perform on the testing data.

Splitting data into training and testing sets was an old practice, but the
idea of reusing such datasets as benchmarks was novel and transformed
machine learning. The dataset-as-benchmark paradigm caught on and became
core to applied machine learning research for decades to come. Indeed,
machine learning benchmarks were at the center of the most recent wave
of progress on deep learning. Chief among them was ImageNet, a large
repository of images, labeled by nouns of objects displayed in the images. A
subset of roughly 1 million images belonging to 1000 different object classes
was the basis of the ImageNet Large Scale Visual Recognition Challenge.
Organized from 2010 until 2017, the competition became a striking showcase
for performance of deep learning methods for image classification.

Increases in computing power and volume of available data were a key
driving factor for progress in the field. But machine learning benchmarks
did more than to provide data. Benchmarks gave researchers a way to
compare results, share ideas, and organize communities. They implicitly
specified a problem description and a minimal interface contract for code.
Benchmarks also became a means of knowledge transfer between industry
and academia.

The most recent wave of machine learning as pattern classification was
so successful, in fact, that it became the new artificial intelligence in the
public narrative of popular media. The technology reached entirely new
levels of commercial significance with companies competing fiercely over
advances in the space.

This new artificial intelligence had done away with the symbolic rea-
soning of the McCarthy era. Instead, the central drivers of progress were
widely regarded as growing datasets, increasing compute resources, and
more benchmarks along with publicly available code to start from. Are
those then the only ingredients needed to secure the sustained success of



machine learning in the real world?

Prediction and action

Unknown outcomes often follow patterns found in past observations. But
what do we do with the patterns we find and the predictions we make? Like
Halley proposing his life table for annuity pricing, predictions only become
useful when they are acted upon. But going from patterns and predictions
to successful actions is a delicate task. How can we even anticipate the
effect of a hypothetical action when our actions now influence the data we
observe and value we accrue in the future?

One way to determine the effect of an action is experimentation: try it
out and see what happens. But there’s a lot more we can do if we can model
the situation more carefully. A model of the environment specifies how an
action changes the state of the world, and how in turn this state results in a
gain or loss of utility. We include some aspects of the environment explicitly
as variables in our model. Others we declare exogenous and model as noise
in our system.

The solution of how to take such models and turn them into plans of
actions that maximize expected utility is a mathematical achievement of the
2oth century. By and large, such problems can be solved by dynamic program-
ming. Initially formulated by Bellman in 1954, dynamic programming poses
optimization problems where at every time step, we observe data, take an
action, and pay a cost. By chaining these together in time, elaborate plans
can be made that remain optimal under considerable stochastic uncertainty.
These ideas revolutionized aerospace in the 1960s, and are still deployed
in infrastructure planning, supply chain management, and the landing of
SpaceX rockets. Dynamic programming remains one of the most important
algorithmic building blocks in the computer science toolkit.

Planning actions under uncertainty has also always been core to artificial
intelligence research, though initial proposals for sequential decision making
in Al were more inspired by neuroscience than operations research. In 1950-
era Al, the main motivating concept was one of reinforcement learning, which
posited that one should encourage taking actions that were successful in the
past. This reinforcement strategy led to impressive game-playing algorithms
like Samuel’s Checkers Agent circa 1959. Surprisingly, it wasn’t until
the 1990s that researchers realized that reinforcement learning methods
were approximation schemes for dynamic programming. Powered by
this connection, a mix of researchers from Al and operations research
applied neural nets and function approximation to simplify the approximate
solution of dynamic programming problems. The subsequent 30 years have



led to impressive advances in reinforcement learning and approximate
dynamic programming techniques for playing games, such as Go, and in
powering dexterous manipulation in robotic systems.

Central to the reinforcement learning paradigm is understanding how
to balance learning about an environment and acting on it. This balance
is a non-trivial problem even in the case where actions do not lead to a
change in state. In the context of machine learning, experimentation in the
form of taking an action and observing its effect often goes by the name
exploration. Exploration reveals the payoff of an action, but it comes at the
expense of not taking an action that we already knew had a decent payoff.
Thus, there is an inherent tradeoff between exploration and exploitation of
previous actions. Though in theory, the optimal balance can be computed by
dynamic programming, it is more common to employ techniques from bandit
optimization that are simple and effective strategies to balance exploration
and exploitation.

Not limited to experimentation, causality is a comprehensive concep-
tual framework to reason about the effect of actions. Causal inference,
in principle, allows us to estimate the effect of hypothetical actions from
observational data. A growing technical repertoire of causal inference is
taking various sciences by storm as witnessed in epidemiology, political
science, policy, climate, and development economics.

There are good reasons that many see causality as a promising avenue
for making machine learning methods more robust and reliable. Current
state-of-the-art predictive models remain surprisingly fragile to changes
in the data. Even small natural variations in a data-generating process
can significantly deteriorate performance. There is hope that tools from
causality could lead to machine learning methods that perform better under
changing conditions.

However, causal inference is no panacea. There are no causal insights
without making substantive judgments about the problem that are not
verifiable from data alone. The reliance on hard earned substantive domain
knowledge stands in contrast with the nature of recent advances in machine
learning that largely did without—and that was the point.

Chapter notes

Halley’s life table has been studied and discussed extensively; for an entry
point, see recent articles by Bellhouse® and Ciecka,? or the article by Pearson
and Pearson.#

Halley was not the first to create a life table. In fact, what Halley created
is more accurately called a population table. Instead, John Grount deserves



credit for the first life table in 1662 based on mortality records from London.
Considered to be the founder of demography and an early epidemiologist,
Grount’s work was in many ways more detailed than Halley’s fleeting
engagement with Breslau’s population. However, to Grount’s disadvantage
the mortality records released in London at the time did not include the age
of the deceased, thus complicating the work significantly.

Mathematician de Moivre picked up Halley’s life table in 1725 and
sharpened the mathematical rigor of Halley’s idea. A few years earlier, de
Moivre had published the first textbook on probability theory called “The
Doctrine of Chances: A Method of Calculating the Probability of Events in
Play”. Although de Moivre lacked the notion of a probability distribution,
his book introduced an expression resembling the normal distribution as
an approximation to the Binomial distribution, what was in effect the first
central limit theorem. The time of Halley coincides with the emergence of
probability. Hacking’s book provides much additional context, particularly
relevant are Chapter 12 and 13.

For the history of feedback, control, and computing before cybernetics,
see the excellent text by Mindell.® For more on the cybernetics era itself,
see the books by Kline” and Heims.® See Beniger? for how the concepts of
control and communication and the technology from that era lead to the
modern information society.

The prologue from the 1988 edition of Perceptrons by Minsky and Papert
presents a helpful historical perspective. The recent 2017 reprint of the same
book contains additional context and commentary in a foreword by Léon
Bottou.

Much of the first International Workshop on Machine Learning was
compiled in an edited volume, which summarizes the motivations and
perspectives that seeded the field.” Langley’s article provides helpful
context on the state of evaluation in machine learning in the 1980s and
how the desire for better metrics led to a renewed emphasis on pattern
recognition.” Similar calls for better evaluation motivated the speech
transcription program at DARPA, leading to the TIMIT dataset, arguably
the first machine learning benchmark dataset.> "3 4

It is worth noting that the Parallel Distributed Processing Research Group
led by Rummelhart and McLeland actively worked on neural networks dur-
ing the 1980s and made extensive use of the rediscovered back-propagation
algorithm, an efficient algorithm for computing partial derivatives of a
circuit.®

A recent article by Jordan provides an insightful perspective on how the
field came about and what challenges it still faces.*®
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2
Fundamentals of prediction

Prediction is the art and science of leveraging patterns found in natural and
social processes to conjecture about uncertain events. We use the word
prediction broadly to refer to statements about things we don’t know for
sure yet, including but not limited to the outcome of future events.

Machine learning is to a large extent the study of algorithmic prediction.
Before we can dive into machine learning, we should familiarize ourselves
with prediction. Starting from first principles, we will motivate the goals of
prediction before building up to a statistical theory of prediction.

We can formalize the goal of prediction problems by assuming a popu-
lation of N instances with a variety of attributes. We associate with each
instance two variables, denoted X and Y. The goal of prediction is to
conjecture a plausible value for Y after observing X alone. But when is a
prediction good? For that, we must quantify some notion of the quality of
prediction and aim to optimize that quantity.

To start, suppose that for each variable X we make a deterministic
prediction f(X) by means of some prediction function f. A natural goal is
to find a function f that makes the fewest number of incorrect predictions,
where f(X) # Y, across the population. We can think of this function as a
computer program that reads X as input and outputs a prediction f(X) that
we hope matches the value Y. For a fixed prediction function, f, we can
sum up all of the errors made on the population. Dividing by the size of
the population, we observe the average (or mean) error rate of the function.

Minimizing errors

Let’s understand how we can find a prediction function that makes as few
errors as possible on a given population in the case of binary prediction,
where the variable Y has only two values.

Consider a population of Abalone, a type of marine snail with colorful
shells featuring a varying number of rings. Our goal is to predict the sex,

11
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Figure 2: Predicting the sex of Abalone sea snails

male or female, of the Abalone from the number of rings on the shell.
We can tabulate the population of Abalone by counting for each possible
number of rings, the number of male and female instances in the population.

From this way of presenting the population, it is not hard to compute
the predictor that makes the fewest mistakes. For each value on the X-axis,
we predict “female” if the number of female instances with this X-value is
larger than the number of male instances. Otherwise, we predict “male” for
the given X-value. For example, there’s a majority of male Abalone with
seven rings on the shell. Hence, it makes sense to predict “male” when we
see seven rings on a shell. Scrutinizing the figure a bit further, we can see
that the best possible predictor is a threshold function that returns “male”
whenever the number of rings is at most 8, and “female” whenever the
number of rings is greater or equal to 9.

The number of mistakes our predictor makes is still significant. After
all, most counts are pretty close to each other. But it’s better than random
guessing. It uses whatever there is that we can say from the number of
rings about the sex of an Abalone snail, which is just not much.

What we constructed here is called the minimum error rule. It generalizes
to multiple attributes. If we had measured not only the number of rings,
but also the length of the shell, we would repeat the analogous counting
exercise over the two-dimensional space of all possible values of the two
attributes.

The minimum error rule is intuitive and simple, but computing the
rule exactly requires examining the entire population. Tracking down
every instance of a population is not only intractable. It also defeats the

12



purpose of prediction in almost any practical scenario. If we had a way
of enumerating the X and Y value of all instances in a population, the
prediction problem would be solved. Given an instance X we could simply
look up the corresponding value of Y from our records.

What’s missing so far is a way of doing prediction that does not require
us to enumerate the entire population of interest.

Modeling knowledge

Fundamentally, what makes prediction without enumeration possible is
knowledge about the population. Human beings organize and represent
knowledge in different ways. In this chapter, we will explore in depth the
consequences of one particular way to represent populations, specifically,
as probability distributions.

The assumption we make is that we have knowledge of a probability
distribution p(x,y) over pairs of X and Y values. We assume that this
distribution conceptualizes the “typical instance” in a population. If we
were to select an instance uniformly at random from the population, what
relations between its attributes might we expect? We expect that a uniform
sample from our population would be the same as a sample from p(x,y).
We call such a distribution a statistical model or simply model of a population.
The word model emphasizes that the distribution isn’t the population itself.
It is, in a sense, a sketch of a population that we use to make predictions.

Let’s revisit our Abalone example in probabilistic form. Assume we
know the distribution of the number of rings of male and female Abalone,
as illustrated in the figure.

Both follow a skewed normal distribution described by three parameters
each, a location, a scale, and a skew parameter. Knowing the distribution is
to assume that we know these parameters. Although the specific numbers
won’t matter for our example, let’s spell them out for concreteness. The
distribution for male Abalone has location 7.4, scale 4.48, and skew 3.12,
whereas the distribution for female Abalone has location 7.63, scale 4.67,
and skew 4.34. To complete the specification of the joint distribution over X
and Y, we need to determine the relative proportion of males and females.
Assume for this example that male and female Abalone are equally likely.

Representing the population this way, it makes sense to predict “male”
whenever the probability density for male Abalone is larger than that for
female Abalone. By inspecting the plot we can see that the density is
higher for male snails up until 8 rings at which point it is larger for female
instances. We can see that the predictor we derive from this representation
is the same threshold rule that we had before.

13
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Figure 3: Representing Abalone population as a distribution

We arrived at the same result without the need to enumerate and count
all possible instances in the population. Instead, we recovered the minimum
error rule from knowing only 7 parameters, three for each conditional
distribution, and one for the balance of the two classes.

Modeling populations as probability distributions is an important step
in making prediction algorithmic. It allows us to represent populations
succinctly, and gives us the means to make predictions about instances we
haven’t encountered.

Subsequent chapters extend these fundamentals of prediction to the
case where we don’t know the exact probability distribution, but only have
a random sample drawn from the distribution. It is tempting to think
about machine learning as being all about that, namely what we do with
a sample of data drawn from a distribution. However, as we learn in this
chapter, many fundamentally important questions arise even if we have full
knowledge of the population.

Prediction from statistical models

Let’s proceed to formalize prediction assuming we have full knowledge of
a statistical model of the population. Our first goal is to formally develop
the minimum error rule in greater generality.

We begin with binary prediction where we suppose Y has two alternative
values, 0 and 1. Given some measured information X, our goal is to
conjecture whether Y equals zero or one.

Throughout we assume that X and Y are random variables drawn from
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a joint probability distribution. It is convenient both mathematically and
conceptually to specify the joint distribution as follows. We assume that Y
has a priori (or prior) probabilities:

po=P[Y=0], p1=P[Y=1]

That is, we assume we know the proportion of instances with Y = 1 and
Y = 0 in the population. We’ll always model available information as
being a random vector X with support in RY. Its distribution depends
on whether Y is equal to zero or one. In other words, there are two
different statistical models for the data, one for each value of Y. These
models are the conditional probability densities of X given a value y for Y,
denoted p(x | Y = y). This density function is often called a generative model
or likelihood function for each scenario.

Example: signal versus noise

For a simple example with more mathematical formalism, suppose that
when Y = 0 we observe a scalar X = w where w is unit-variance, zero
mean Gaussian noise w ~ N(0,1). Recall that the Gaussian distribution of

2

1/ x—p\2
mean y and variance o is given by the density #ﬁeﬁ(%) .
Suppose when Y = 1, we would observe X = s + w for some scalar s.

That is, the conditional densities are

plx | Y =0)=N(0,1),
p(x|Y=1)=N(s1).

The larger the shift s is, the easier it is to predict whether Y =0 or Y = 1.
For example, suppose s = 10 and we observed X = 11. If we had Y = 0, the
probability that the observation is greater than 10 is on the order of 10723,
and hence we’d likely think we’re in the alternative scenario where Y = 1.
However, if s were very close to zero, distinguishing between the two
alternatives is rather challenging. We can think of a small difference s that
we're trying to detect as a needle in a haystack.

Prediction via optimization

Our core approach to all statistical decision making will be to formulate an
appropriate optimization problem for which the decision rule is the optimal
solution. That is, we will optimize over algorithms, searching for functions
that map data to decisions and predictions. We will define an appropriate
notion of the cost associated to each decision, and attempt to construct

15



Overlapping gaussians Well-separated gaussians

41 0.4
R f— Ho — Hy
— H; Hy

0.3 1 0.3 1

0.2 1 0.2 1

0.1 0.1+

0.0 1 0.0 1

-50 =25 0.0 2.5 5.0 -10 -5 0 5 10

Figure 4: Illustration of shifted Gaussians

decision rules that minimize the expected value of this cost. As we will see,
choosing this optimization framework has many immediate consequences.

Predictors and labels

A predictor is a function Y (x) that maps an input x to a prediction 7 = Y (x).
The prediction ¥ is also called a label for the point x. The target variable Y
can be both real valued or discrete. When Y is a discrete random variable,
each different value it can take on is called a class of the prediction problem.

To ease notation, we take the liberty to write Y as a shorthand for the
random variable Y(X) that we get by applying the prediction function Y to
the random variable X.

The most common case we consider through the book is binary predic-
tion, where we have two classes, 0 and 1. Sometimes it’s mathematically
convenient to instead work with the numbers —1 and 1 for the two classes.

In most cases we consider, labels are scalars that are either discrete
or real-valued. Sometimes it also makes sense to consider vector-valued
predictions and target variables.

The creation and encoding of suitable labels for a prediction problem
is an important step in applying machine learning to real world problems.
We will return to it multiple times.

Loss functions and risk

The final ingredient in our formal setup is a loss function which generalizes
the notion of an error that we defined as a mismatch between prediction
and target value.
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A loss function takes two inputs, i and y, and returns a real num-
ber loss(i,y) that we interpret as a quantified loss for predicting i when
the target is y. A loss could be negative in which case we think of it as a
reward.

A prediction error corresponds to the loss function loss(i,y) = 1{y # y}
that indicates disagreement between its two inputs. Loss functions give us
modeling flexibility that will become crucial as we apply this formal setup
throughout this book.

An important notion is the expected loss of a predictor taken over a
population. This construct is called risk.

Definition 1. We define the risk associated with Y to be
R[Y] := E[loss(Y(X),Y)].
Here, the expectation is taken jointly over X and Y.

Now that we defined risk, our goal is to determine which decision rule
minimizes risk. Let’s get a sense for how we might go about this.

In order to minimize risk, theoretically speaking, we need to solve an
infinite dimensional optimization problem over binary-valued functions. That
is, for every x, we need to find a binary assignment. Fortunately, the infinite
dimension here turns out to not be a problem analytically once we make
use of the law of iterated expectation.

Lemma 1. We claim that the optimal predictor is given by

Vi) =1 {“’[Y 1| X = > l5(1,0) ~10ss(0,0)

~ loss(0,1) — loss(1,1) Py =0]X= x]} '

This rule corresponds to the intuitive rule we derived when thinking
about how to make predictions over the population. For a fixed value of
the data X = x, we compare the frequency of which Y = 1 occurs to which
Y = 0 occurs. If this frequency exceeds some threshold that is defined by

our loss function, then we set Y(x) = 1. Otherwise, we set Y (x) = 0.

Proof. To see why this rule is optimal, we make use of the law of iterated
expectation:

Elloss(Y(X), V)] = E [E [loss(¥(X),¥) | X]] .

Here, the outer expectation is over a random draw of X and the inner
expectation samples Y conditional on X. Since there are no constraints on
the predictor Y, we can minimize the expression by minimizing the inner
expectation independently for each possible setting that X can assume.
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Indeed, for a fixed value x, we can expand the expected loss for each of
the two possible predictions:

Elloss(0,Y) | X = x] =1oss(0,0) P[Y =0 | X =x] +1loss(0,1)P[Y =1 | X =
Elloss(1,Y) | X =x] =loss(1,0)P[Y =0 | X =x] +1loss(1,1)P[Y =1 | X =

The optimal assignment for this x is to set Y(x) = 1 whenever the sec-
ond expression is smaller than the first. Writing out this inequality and
rearranging gives us the rule specified in the lemma.

O

Probabilities of the form P[Y = y | X = x|, as they appeared in the
lemma, are called posterior probability.
We can relate them to the likelihood function via Bayes rule:

p(x | Y =y)py

]P[Y:y\X:x]: P(X)

4

where p(x) is a density function for the marginal distribution of X.
When we use posterior probabilities, we can rewrite the optimal predic-
tor as

s, [px]Y=1) _ po(loss(1,0) —loss(0,0))
Y(x) = ﬂ{p(x | Y =0) . p?(loss(O,l) — loss(l,l))} ’

This rule is an example of a likelihood ratio test.
Definition 2. The likelihood ratio is the ratio of the likelihood functions:

oy Py =1)
L) = oy =0)

A likelihood ratio test (LRT) is a predictor of the form
Y(x) = H{L(x) = 4}
for some scalar threshold n > 0.

If we denote the optimal threshold value

_ po(loss(1,0) — loss(0,0))
= p(l)(loss(O,l) —loss(1,1))’ (1)

then the predictor that minimizes the risk is the likelihood ratio test
Y(x) =1{L(x) > n}.
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A LRT naturally partitions the sample space in two regions:

Xo={xeX: L(x)<ny}
X={xeX: L(x)>n}.

The sample space X then becomes the disjoint union of &y and &7. Since
we only need to identify which set x belongs to, we can use any function
h : X — R which gives rise to the same threshold rule. As long as h(x) <
t whenever L£(x) < 5 and vice versa, these functions give rise to the
same partition into Xy and &7. So, for example, if ¢ is any monotonically
increasing function, then the predictor

Ye(x) = 1{g(L(x)) > g(n)}

is equivalent to using Y (x). In particular, it’s popular to use the logarithmic
predictor

Yiog(x) = 1{log p(x | Y =1) —log p(x | Y = 0) > log(1)},

as it is often more convenient or numerically stable to work with logarithms
of likelihoods.

This discussion shows that there are an infinite number of functions which
give rise to the same binary predictor. Hence, we don’t need to know the
conditional densities exactly and can still compute the optimal predictor.
For example, suppose the true partitioning of the real line under an LRT is

Xo={x:x>0} and A} ={x:x<0}.

Setting the threshold to t = 0, the functions h(x) = x or h(x) = x> give the
same predictor, as does any odd function which is positive on the right half
line.

Example: needle in a haystack revisited

Let’s return to our needle in a haystack example with

N(0,1),
N(s, 1),

p(X|Y =0)
p(X|Y=1)

and assume that the prior probability of Y = 1 is very small, say, p; = 107°.
Suppose that if we declare Y = 0, we do not pay a cost. If we declare Y =1

but are wrong, we incur a cost of 100. But if we guess Y = 1and it
is actually true that Y = 1, we actually gain a reward of 1,000,000. That
is loss(0,0) = 0, loss(0,1) = 0, loss(1,0) = 100, and loss(1,1) = —1,000, 000 .
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What is the LRT for this problem? Here, it's considerably easier to work
with logarithms:

1—10"°)-100
log(n) = log (( 106 306 ) ~ 4.61

Now,

log p(x | Y = 1) ~log p(x | Y = 0) = — (x — s 4 522 = sx — 15

Hence, the optimal predictor is to declare

A~

Yy=1 {sx > 1g? —Hog(;y)} :

The optimal rule here is linear. Moreover, the rule divides the space into
two open intervals. While the entire real line lies in the union of these two
intervals, it is exceptionally unlikely to ever see an x larger than |s| + 5.
Hence, even if our predictor were incorrect in these regions, the risk would
still be nearly optimal as these terms have almost no bearing on our expected
risk!

Maximum a posteriori and maximum likelihood

A folk theorem of statistical decision theory states that essentially all optimal
rules are equivalent to likelihood ratio tests. While this isn’t always true,
many important prediction rules end up being equivalent to LRTs. Shortly,
we’ll see an optimization problem that speaks to the power of LRTs. But
before that, we can already show that the well known maximum likelihood
and maximum a posteriori predictors are both LRTs.

The expected error of a predictor is the expected number of times
we declare Y = 0 (resp. Y = 1) when Y = 1 (resp. Y = 0) is
true. Minimizing the error is equivalent to minimizing the risk with
cost loss(0,0) = loss(1,1) = 0, loss(1,0) = loss(0,1) = 1. The optimum
predictor is hence a likelihood ratio test. In particular,

Y(x)=1 {[,(x) > %} .

Using Bayes rule, one can see that this rule is equivalent to

Y(x) = Y=vy|X=x].
(x) argygg};}ﬂ’[ vl x|

Recall that the expression P[Y = y | X = x] is called the posterior probabil-
ity of Y = y given X = x. And this rule is hence referred to as the maximum
a posteriori (MAP) rule.
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As we discussed above, the expression p(x | Y = y) is called the likelihood
of the point x given the class Y = y. A maximum likelihood rule would set

A~

Y(x) =argmaxp(x | Y =y).
Yy

This is completely equivalent to the LRT when py = p; and the costs
are loss(0,0) = loss(1,1) = 0, loss(1,0) = loss(0,1) = 1. Hence, the maxi-
mum likelihood rule is equivalent to the MAP rule with a uniform prior on
the labels.

That both of these popular rules ended up reducing to LRTs is no
accident. In what follows, we will show that LRTs are almost always the
optimal solution of optimization-driven decision theory.

Types of errors and successes

Let Y(x) denote any predictor mapping into {0,1}. Binary predictions can
be right or wrong in four different ways summarized by the confusion table.

Table 1: Confusion table

Y=0 Y=1

Y=0 true negative false negative
Y =1 false positive true positive

Taking expected values over the populations give us four corresponding
rates that are characteristics of a predictor.

1. True Positive Rate: TPR = P[Y(X) = 1| Y = 1]. Also known as
power, sensitivity, probability of detection, or recall.

2. False Negative Rate: FNR = 1 — TPR. Also known as type II error or
probability of missed detection.

3. False Positive Rate: FPR = P[Y(X) = 1| Y = 0]. Also known as size
or type I error or probability of false alarm.

4. True Negative Rate TNR = 1 — FPR, the probability of declaring

Y =0 given Y = 0. This is also known as specificity.

There are other quantities that are also of interest in statistics and
machine learning;:

1. Precision: P[Y =1 | Y(X) = 1]. This is equal to (p;TPR)/(poFPR +
pi TPR).
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2. F1-score: F; is the harmonic mean of precision and recall. We can

write this as
2TPR

T 1+TPR+ IFPR

K

3. False discovery rate: False discovery rate (FDR) is equal to the ex-
pected ratio of the number of false positives to the total number of
positives.

In the case where both labels are equally likely, precision, F;, and FDR
are also only functions of FPR and TPR. However, these quantities explicitly
account for class imbalances: when there is a significant skew between py
and p1, such measures are often preferred.

TPR and FPR are competing objectives. We’d like TPR as large as
possible and FPR as small as possible.

We can think of risk minimization as optimizing a balance between TPR
and FPR:

R[Y] := E[loss(Y(X),Y)] = aFPR — BTPR + v,
where « and p are nonnegative and -y is some constant. For all such «, g,
and 1, the risk-minimizing predictor is an LRT.

Other cost functions might try to balance TPR versus FPR in other ways.
Which pairs of (FPR, TPR) are achievable?

ROC curves

True and false positive rate lead to another fundamental notion, called the
receiver operating characteristic (ROC) curve.

The ROC curve is a property of the joint distribution (X, Y) and shows
for every possible value « = [0, 1] the best possible true positive rate that
we can hope to achieve with any predictor that has false positive rate a.
As a result the ROC curve is a curve in the FPR-TPR plane. It traces
out the maximal TPR for any given FPR. Clearly the ROC curve contains
values (0,0) and (1, 1), which are achieved by constant predictors that either
reject or accept all inputs.

We will now show, in a celebrated result by Neyman and Pearson, that
the ROC curve is given by varying the threshold in the likelihood ratio test
from negative to positive infinity.

The Neyman-Pearson Lemma

The Neyman-Pearson Lemma, a fundamental lemma of decision theory,
will be an important tool for us to establish three important facts. First, it
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Figure 5: Example of an ROC curve

will be a useful tool for understanding the geometric properties of ROC
curves. Second, it will demonstrate another important instance where an
optimal predictor is a likelihood ratio test. Third, it introduces the notion of
probabilistic predictors.

Suppose we want to maximize true positive rate subject to an upper
bound on the false positive rate. That is, we aim to solve the optimization
problem:

maximize TPR
subject to  FPR <«

Let’s optimize over probabilistic predictors. A probabilistic predictor Q
returns 1 with probability Q(x) and 0 with probability 1 — Q(x). With such
rules, we can rewrite our optimization problem as:

maximizeg E[Q(X)|Y =1]

subjectto E[Q(X)|Y=0] <«
Vx: Q(x) € [0,1]

Lemma 2. Neyman-Pearson Lemma. Suppose the likelihood functions p(x|y)

are continuous. Then the optimal probabilistic predictor that maximizes TPR with

an upper bound on FPR is a deterministic likelihood ratio test.

Even in this constrained setup, allowing for more powerful probabilistic
rules, we can’t escape likelihood ratio tests. The Neyman-Pearson Lemma
has many interesting consequences in its own right that we will discuss
momentarily. But first, let’s see why the lemma is true.
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The key insight is that for any LRT, we can find a loss function for which
it is optimal. We will prove the lemma by constructing such a problem, and
using the associated condition of optimality.

Proof. Let 1 be the threshold for an LRT such that the predictor
Qy(x) ={L(x) > 1}

has FPR = a. Such an LRT exists because we assumed our likelihoods were
continuous. Let § denote the TPR of Q.

We claim that Q; is optimal for the risk minimization problem corre-
sponding to the loss function

loss(1,0) = %, loss(0,1) =1, loss(1,1) =0, loss(0,0) = 0.

Indeed, recalling Equation 1, the risk minimizer for this loss function
corresponds to a likelihood ratio test with threshold value

po(loss(1,0) —loss(0,0))  poloss(1,0)
p1(loss(0,1) —loss(1,1)) ~ p1loss(0,1) T

Moreover, under this loss function, the risk of a predictor Q equals

R[Q] = poFPR(Q)loss(1,0) + p1(1 — TPR(Q))loss(0,1)
= p1nFPR(Q) + p1(1 — TPR(Q)).

Now let Q be any other predictor with FPR(Q) < «. We have by the
optimality of Q; that

pina+ p1(1 —B) < piyFPR(Q) + p1(1 — TPR(Q))
< pina + p1(1 — TPR(Q)),

which implies TPR(Q) < B. This in turn means that Q; maximizes TPR for
all rules with FPR < a, proving the lemma.
]

Properties of ROC curves

A specific randomized predictor that is useful for analysis combines two
other rules. Suppose predictor one yields (FPRM, TPR(M) and the second

rule achieves (FPR(®), TPR(®)). If we flip a biased coin and use rule one with
probability p and rule 2 with probability 1 — p, then this yields a random-

ized predictor with (FPR, TPR) = (pFPR(") + (1 — p)FPR?), pTPRM + (1 —
p)TPR(Z)). Using this rule lets us prove several properties of ROC curves.
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Proposition 1. The points (0,0) and (1,1) are on the ROC curve.

Proof. This proposition follows because the point (0, 0) is achieved when the
threshold # = oo in the likelihood ratio test, corresponding to the constant 0
predictor. The point (1,1) is achieved when 1 = 0, corresponding to the

constant 1 predictor.
O

The Neyman-Pearson Lemma gives us a few more useful properties.
Proposition 2. The ROC must lie above the main diagonal.

Proof. To see why this proposition is true, fix some a > 0. Using a ran-
domized rule, we can achieve a predictor with TPR = FPR = «. But the
Neyman-Pearson LRT with FPR constrained to be less than or equal to «

achieves true positive rate greater than or equal to the randomized rule.
O

Proposition 3. The ROC curve is concave.

Proof. Suppose (FPR(#1), TPR(#1)) and (FPR(72), TPR(72)) are achievable.
Then

(tFPR(171) + (1 — £)FPR(172), tTPR(171) 4 (1 — ) TPR(772))

is achievable by a randomized test. Fixing FPR < (FPR(#;) + (1 —
t)FPR(172), we see that the optimal Neyman-Pearson LRT achieves TPR >
TPR(p1) + (1 HTPR(72).

[

Example: the needle one more time
Consider again the needle in a haystack example, where p(x | Y = 0) =
N(0,0%) and p(x | Y = 1) = N (s,0?) with s a positive scalar. The optimal

~ 2
predictor is to declare Y = 1 when X is greater than y := 5 + %. Hence
we have

TPR = / x]Y—l)dx—zerfc(\/_a)

Vi)

For fixed s and o, the ROC curve (FPR(vy), TPR(-y)) only depends on
the signal to noise ratio (SNR), s/co. For small SNR, the ROC curve is close to
the FPR = TPR line. For large SNR, TPR approaches 1 for all values of FPR.

FPR = / x|Y—O)dx—2erfc(
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Figure 6: The ROC curves for various signal to noise ratios in the needle in
the haystack problem.

Area under the ROC curve

Oftentimes in information retrieval and machine learning, the term ROC
curve is overloaded to describe the achievable FPR-TPR pairs that we get
by varying the threshold ¢ in any predictor Y(x) = 1{R(x) > t}. Note such
curves must lie below the ROC curves that are traced out by the optimal
likelihood ratio test, but may approximate the true ROC curves in many
cases.

A popular summary statistic for evaluating the quality of a decision
function is the area under its associated ROC curve. This is commonly
abbreviated as AUC. In the ROC curve plotted in the previous section, as
the SNR increases, the AUC increases. However, AUC does not tell the
entire story. Here we plot two ROC curves with the same AUC.

If we constrain FPR to be less than 10%, for the blue curve, TPR can be
as high as 80% whereas it can only reach 50% for the red. AUC should
be always viewed skeptically: the shape of an ROC curve is always more
informative than any individual number.

Decisions that discriminate

The purpose of prediction is almost always decision making. We build
predictors to guide our decision making by acting on our predictions. Many
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Figure 7: Two ROC curves with the same AUC. Note that if we constrain
FPR to be less than 10%, for the blue curve, TPR can be as high as 80%

whereas it can only reach 50% for the red.

decisions entail a life changing event for the individual. The decision could
grant access to a major opportunity, such as college admission, or deny
access to a vital resource, such as a social benefit.

Binary decision rules always draw a boundary between one group in
the population and its complement. Some are labeled accept, others are
labeled reject. When decisions have serious consequences for the individual,
however, this decision boundary is not just a technical artifact. Rather it has

moral and legal significance.
The decision maker often has access to data that encode an individual’s

status in socially salient groups relating to race, ethnicity, gender, religion,
or disability status. These and other categories that have been used as the
basis of adverse treatment, oppression, and denial of opportunity in the

past and in many cases to this day.
Some see formal or algorithmic decision making as a neutral mathemati-

cal tool. However, numerous scholars have shown how formal models can
perpetuate existing inequities and cause harm. In her book on this topic,

Ruha Benjamin warns of

the employment of new technologies that reflect and reproduce
existing inequities but that are promoted and perceived as more
objective or progressive than the discriminatory systems of a

previous era.'”
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Even though the problems of inequality and injustice are much broader
than one of formal decisions, we already encounter an important and
challenging facet within the narrow formal setup of this chapter. Specifically,
we are concerned with decision rules that discriminate in the sense of creating
an unjustified basis of differentiation between individuals.

A concrete example is helpful. Suppose we want to accept or reject
individuals for a job. Suppose we have a perfect estimate of the number of
hours an individual is going to work in the next 5 years. We decide that
this a reasonable measure of productivity and so we accept every applicant
where this number exceeds a certain threshold. On the face of it, our rule
might seem neutral. However, on closer reflection, we realize that this
decision rule systematically disadvantages individuals who are more likely
than others to make use of their parental leave employment benefit that
our hypothetical company offers. We are faced with a conundrum. On
the one hand, we trust our estimate of productivity. On the other hand,
we consider taking parental leave morally irrelevant to the decision we're
making. It should not be a disadvantage to the applicant. After all that is
precisely the reason why the company is offering a parental leave benefit in
the first place.

The simple example shows that statistical accuracy alone is no safeguard
against discriminatory decisions. It also shows that ignoring sensitive at-
tributes is no safeguard either. So what then is discrimination and how can we
avoid it? This question has occupied scholars from numerous disciplines for
decades. There is no simple answer. Before we go into attempts to formalize
discrimination in our statistical decision making setting, it is helpful to take
a step back and reflect on what the law says.

Legal background in the United States

The legal frameworks governing decision making differ from country to
country, and from one domain to another. We take a glimpse at the situation
in the United States, bearing in mind that our description is incomplete and
does not transfer to other countries.

Discrimination is not a general concept. It is concerned with socially
salient categories that have served as the basis for unjustified and systemat-
ically adverse treatment in the past. United States law recognizes certain
protected categories including race, sex (which extends to sexual orientation),
religion, disability status, and place of birth.

Further, discrimination is a domain specific concept concerned with
important opportunities that affect people’s lives. Regulated domains
include credit (Equal Credit Opportunity Act), education (Civil Rights Act
of 1964; Education Amendments of 1972), employment (Civil Rights Act of
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1964), housing (Fair Housing Act), and public accommodation (Civil Rights
Act of 1964). Particularly relevant to machine learning practitioners is the
fact that the scope of these regulations extends to marketing and advertising
within these domains. An ad for a credit card, for example, allocates access
to credit and would therefore fall into the credit domain.

There are different legal frameworks available to a plaintiff that brings
forward a case of discrimination. One is called disparate treatment, the other
is disparate impact. Both capture different forms of discrimination. Disparate
treatment is about purposeful consideration of group membership with the
intention of discrimination. Disparate impact is about unjustified harm,
possibly through indirect mechanisms. Whereas disparate treatment is
about procedural fairness, disparate impact is more about distributive justice.

It’s worth noting that anti-discrimination law does not reflect one over-
arching moral theory. Pieces of legislation often came in response to civil
rights movements, each hard fought through decades of activism.

Unfortunately, these legal frameworks don’t give us a formal definition
that we could directly apply. In fact, there is some well-recognized tension
between the two doctrines.

Formal non-discrimination criteria

The idea of formal non-discrimination (or fairness) criteria goes back to
pioneering work of Anne Cleary and other researchers in the educational
testing community of the 1960s.™®

The main idea is to introduce a discrete random variable A that encodes
membership status in one or multiple protected classes. Formally, this
random variable lives in the same probability space as the other covariates X,
the decision Y = 1{R > t} in terms of a score R, and the outcome Y. The
random variable A might coincide with one of the features in X or correlate
strongly with some combination of them.

Broadly speaking, different statistical fairness criteria all equalize some
group-dependent statistical quantity across groups defined by the different
settings of A. For example, we could ask to equalize acceptance rates across

all groups. This corresponds to imposing the constraint for all groups a
and b:

PY=1|A=al=P[Y=1| A=)

Researchers have proposed dozens of different criteria, each trying to
capture different intuitions about what is fair. Simplifying the landscape of
fairness criteria, we can say that there are essentially three fundamentally
different ones of particular significance:
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e Acceptance rate P[Y = 1]

e Errorrates P[Y =0|Y=1]and P[Y =1|Y = 0]
e Qutcome frequency given score value P[Y =1 | R =7]

The meaning of the first two as a formal matter is clear given what we
already covered. The third criterion needs a bit more motivation. A useful
property of score functions is calibration which asserts that P[Y =1 | R =
r] = r for all score values r. In words, we can interpret a score value r as the
propensity of positive outcomes among instances assigned the score value r.
What the third criterion says is closely related. We ask that the score values
have the same meaning in each group. That is, instances labeled r in one
group are equally likely to be positive instances as those scored r in any
other group.

The three criteria can be generalized and simplified using three different
conditional independence statements.

Table 2: Non-discrimination criteria

Independence Separation Sufficiency
RLA RLA|Y YLA|R

Each of these applies not only to binary prediction, but any set of
random variables where the independence statement holds. It’s not hard to
see that independence implies equality of acceptance rates across groups.
Separation implies equality of error rates across groups. And sufficiency
implies that all groups have the same rate of positive outcomes given a
score value.™

Researchers have shown that any two of the three criteria are mutually
exclusive except in special cases. That means, generally speaking, imposing
one criterion forgoes the other two.?*>!

Although these formal criteria are easy to state and arguably natural in
the language of decision theory, their merit as measures of discrimination
has been subject of an ongoing debate.

Merits and limitations of a narrow statistical perspective

The tension between these criteria played out in a public debate around the
use of risk scores to predict recidivism in pre-trial detention decisions.
There’s a risk score, called COMPAS, used by many jurisdictions in the
United States to assess risk of recidivism in pre-trial bail decisions. Recidivism
refers to a person’s relapse into criminal behavior. In the United States, a
defendant may either be detained or released on bail prior to the trial in
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court depending on various factors. Judges may detain defendants in part
based on this score.

Investigative journalists at ProPublica found that Black defendants face
a higher false positive rate, i.e., more Black defendants labeled high risk
end up not committing a crime upon release than among White defendants
labeled high risk.>*> In other words, the COMPAS score fails the separation
criterion.

A company called Northpointe, which sells the proprietary COMPAS
risk model, pointed out in return that Black and White defendants have
equal recidivism rates given a particular score value. That is defendants
labeled, say, an ‘8’ for high risk would go on to recidivate at a roughly equal
rate in either group. Northpointe claimed that this property is desirable so
that a judge can interpret scores equally in both groups.?3

The COMPAS debate illustrates both the merits and limitations of the
narrow framing of discrimination as a classification criterion.

On the hand, the error rate disparity gave ProPublica a tangible and con-
crete way to put pressure on Northpointe. The narrow framing of decision
making identifies the decision maker as responsible for their decisions. As
such, it can be used to interrogate and possibly intervene in the practices of
an entity.

On the other hand, decisions are always part of a broader system that
embeds structural patterns of discrimination. For example, a measure of
recidivism hinges crucially on existing policing patterns. Crime is only
found where policing activity happens. However, the allocation and severity
of police force itself has racial bias. Some scholars therefore find an emphasis
on statistical criteria rather than structural determinants of discrimination
to be limited.

Chapter notes

The theory we covered in this chapter is also called detection theory and
decision theory. Similarly, what we call a predictor throughout has various
different names, such as decision rule or classifier.

The elementary detection theory covered in this chapter has not changed
much at all since the 1950s and is essentially considered a “solved problem”.
Neyman and Pearson invented the likelihood ratio test** and later proved
their lemma showing it to be optimal for maximizing true positive rates
while controlling false positive rates.>> Wald followed this work by invent-
ing general Bayes risk minimization in 1939.2° Wald’s ideas were widely
adopted during World War II for the purpose of interpreting RADAR sig-
nals which were often very noisy. Much work was done to improve RADAR
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operations, and this led to the formalization that the output of a RADAR
system (the receiver) should be a likelihood ratio, and a decision should
be made based on an LRT. Our proof of Neyman-Pearson’s lemma came
later, and is due to Bertsekas and Tsitsiklis (See Section 9.3 of Introduction to
Probability®7).

Our current theory of detection was fully developed by Peterson, Bird-
sall, and Fox in their report on optimal signal detectability.?® Peterson,
Birdsall, and Fox may have been the first to propose Receiver Operating
Characteristics as the means to characterize the performance of a detection
system, but these ideas were contemporaneously being applied to better
understand psychology and psychophysics as well.?

Statistical Signal Detection theory was adopted in the pattern recognition
community at a very early stage. Chow proposed using optimal detection
theory,3° and this led to a proposal by Highleyman to approximate the risk
by its sample average.3' This transition from population risk to “empirical”
risk gave rise to what we know today as machine learning.

Of course, how decisions and predictions are applied and interpreted
remains an active research topic. There is a large amount of literature now
on the topic of fairness and machine learning. For a general introduction
to the problem and dangers associated with algorithmic decision making
not limited to discrimination, see the books by Benjamin,'” Broussard,3*
Eubanks,33 Noble,34 and O’Neil.3> The technical material in our section on
discrimination follows Chapter 2 in the textbook by Barocas, Hardt, and
Narayanan."?

The abalone example was derived from data available at the UCI Ma-
chine Learning Repository, which we will discuss in more detail in Chapter
8. We modified the data to ease exposition. The actual data does not have
an equal number of male and female instances, and the optimal predictor is
not exactly a threshold function.
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3
Supervised learning

Previously, we talked about the fundamentals of prediction and statistical
modeling of populations. Our goal was, broadly speaking, to use available
information described by a random variable X to conjecture about an
unknown outcome Y.

In the important special case of a binary outcome Y, we saw that we can

write an optimal predictor Y as a threshold of some function f:

Y(x) = 1{f(x) > t}

We saw that in many cases the optimal function is a ratio of two likelihood
functions.

This optimal predictor has a serious limitation in practice, however. To
be able to compute the prediction for a given input, we need to know a
probability density function for the positive instances in our problem and
also one for the negative instances. But we are often unable to construct or
unwilling to assume a particular density function.

As a thought experiment, attempt to imagine what a probability density
function over images labeled cat might look like. Coming up with such a
density function appears to be a formidable task, one that’s not intuitively
any easier than merely classifying whether an image contains a cat or not.

In this chapter, we transition from a purely mathematical characterization
of optimal predictors to an algorithmic framework. This framework has
two components. One is the idea of working with finite samples from a
population. The other is the theory of supervised learning and it tells us
how to use finite samples to build predictors algorithmically.

Sample versus population

Let’s take a step back to reflect on the interpretation of the pair of random
variables (X,Y) that we've worked with so far. We think of the random
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variables (X,Y) as modeling a population of instances in our prediction
problem. From this pair of random variables, we can derive other random
variables such as a predictor Y = 1{f(X) > t}. All of these are random
variables in the same probability space. When we talk about, say, the true
positive rate of the predictor Y, we therefore make a statement about the
joint distribution of (X,Y).

In almost all prediction problems, however, we do not have access to the
entire population of instances that we will encounter. Neither do we have a
probability model for the joint distribution of the random variables (X, Y).
The joint distribution is a theoretical construct that we can reason about, but
it doesn’t readily tell us what to do when we don’t have precise knowledge
of the joint distribution.

What knowledge then do we typically have about the underlying popu-
lation and how can we use it algorithmically to find good predictors? In
this chapter we will begin to answer both questions.

First we assume that from past experience we have observed n labeled
instances (x1,Y1), ..., (Xn, Yn). We assume that each data point (x;,y;) is a
draw from the same underlying distribution (X,Y). Moreover, we will
often assume that the data points are drawn independently. This pair
of assumptions is often called the “i.i.d. assumption”, a shorthand for
independent and identically distributed.

To give an example, consider a population consisting of all currently
eligible voters in the United States and some of their features, such as, age,
income, state of residence etc. An i.i.d. sample from this population would
correspond to a repeated sampling process that selects a uniformly random
voter from the entire reference population.

Sampling is a difficult problem with numerous pitfalls that can strongly
affect the performance of statistical estimators and the validity of what we
learn from data. In the voting example, individuals might be unreachable
or decline to respond. Even defining a good population for the problem
we're trying to solve is often tricky. Populations can change over time. They
may depend on a particular social context, geography, or may not be neatly
characterized by formal criteria. Task yourself with the idea of taking a
random sample of spoken sentences in the English language, for example,
and you will quickly run into these issues.

In this chapter, as is common in learning theory, we largely ignore these
important issues. We instead focus on the significant challenges that remain
even if we have a well-defined population and an unbiased sample from it.
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Supervised learning

Supervised learning is the prevalent method for constructing predictors from
data. The essential idea is very simple. We assume we have labeled data,
in this context also called training examples, of the form (x1,y1), ..., (Xn, Yn),
where each example is a pair (x;,y;) of an instance x; and a corresponding
label y;. The notion of supervision refers to the availability of these labels.

Given such a collection of labeled data points, supervised learning
turns the task of finding a good predictor into an optimization problem
involving these data points. This optimization problem is called empirical
risk minimization.

Recall, in the last chapter we assumed full knowledge of the joint dis-
tribution of (X,Y) and analytically found predictors that minimize risk.
The risk is equal to the expected value of a loss function that quantifies
the cost of each possible prediction for a given true outcome. For binary
prediction problems, there are four possible pairs of labels corresponding
to true positives, false positives, true negatives, and false negatives. In this
case, the loss function boils down to specifying a cost to each of the four
possibilities.

More generally, a loss function is a function loss: Y x YV — R, where )
is the set of values that Y can assume. Whereas previously we focused on
the predictor Y as a random variable, in this chapter our focus shifts to the
functional form that the predictor has. By convention, we write Y = f(X),
where f: X — ) is a function that maps from the sample space X into the
label space V.

Although the random variable Y and the function f are mathematically
not the same objects, we will call both a predictor and extend our risk
definition to apply the function as well:

R[f] = E [loss(f(X),Y)] .

The main new definition in this chapter is a finite sample analog of the risk,
called empirical risk.

Definition 3. Given a set of labeled data points S = ((x1,Y1), .., (Xn,Yn)), the
empirical risk of a predictor f: X — Y with respect to the sample S is defined as

Rolf) = Lo oss(£ (). 3.

Rather than taking expectation over the population, the empirical risk
averages the loss function over a finite sample. Conceptually, we think of
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the finite sample as something that is in our possession, e.g., stored on our
hard disk.

Empirical risk serves as a proxy for the risk. Whereas the risk R[f] is a
population quantity—that is, a property of the joint distribution (X,Y) and
our predictor f—the empirical risk is a sample quantity.

We can think of the empirical risk as the sample average estimator of
the risk. When samples are drawn i.i.d., the empirical risk is a random
variable that equals the sum of n independent random variables. If losses
are bounded, the central limit theorem therefore suggests that the empirical
risk approximates the risk for a fixed predictor f.

Regardless of the distribution of S, however, note that we can always
compute the empirical risk Rg[f] entirely from the sample S and the predic-
tor f. Since empirical risk a quantity we can compute from samples alone, it
makes sense to turn it into an objective function that we can try to minimize
numerically.

Empirical risk minimization is the optimization problem of finding a
predictor in a given function family that minimizes the empirical risk.

Definition 4. Given a function class F C X — ), empirical risk minimization
on a set of labeled data points S corresponds to the objective:

min Rs [f]

A solution to the optimization problem is called empirical risk minimizer.

There is a tautology relating risk and empirical risk that is good to keep

in mind:
R[f] = Rs[f] + (R[f] = Rs[f])

Although mathematically trivial, the tautology reveals an important insight.
To minimize risk, we can first attempt to minimize empirical risk. If we
successfully find a predictor f that achieves small empirical risk Rg[f],
we're left worrying about the term R|[f] — Rg[f]. This term quantifies how
much the empirical risk of f underestimates its risk. We call this difference
generalization gap and it is of fundamental importance to machine learning.
Intuitively speaking, it tells us how well the performance of our predictor
transfers from seen examples (the training examples) to unseen examples (a
fresh example from the population) drawn from the same distribution. This
process is called generalization.

Generalization is not the only goal of supervised learning. A constant
predictor that always outputs 0 generalizes perfectly well, but is almost
always entirely useless. What we also need is that the predictor achieves
small empirical risk Rg[f]. Making the empirical risk small is fundamentally
about optimization. As a consequence, a large part of supervised learning
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deals with optimization. For us to be able to talk about optimization, we
need to commit to a representation of the function class F that appears in
the empirical risk minimization problem. The representation of the function
class, as well as the choice of a suitable loss function, determines whether
or not we can efficiently find an empirical risk minimizer.

To summarize, introducing empirical risk minimization directly leads to
three important questions that we will work through in turn.

* Representation: What is the class of functions F we should choose?

* Optimization: How can we efficiently solve the resulting optimization
problem?

* Generalization: Will the performance of predictor transfer gracefully
from seen training examples to unseen instances of our problem?

These three questions are intertwined. Machine learning is not so much
about studying these questions in isolation as it is about the often delicate
interplay between them. Our choice of representation influences both the
difficulty of optimization and our generalization performance. Improve-
ments in optimization may not help, or could even hurt, generalization.
Moreover, there are aspects of the problem that don’t neatly fall into only
one of these categories. The choice of the loss function, for example, affects
all of the three questions above.

There are important differences between the three questions. Results
in optimization, for example, tend to be independent of the statistical
assumptions about the data generating process. We will see a number of
different optimization methods that under certain circumstances find either
a global or local minimum of the empirical risk objective. In contrast, to
reason about generalization, we need some assumptions about the data
generating process. The most common one is the i.i.d.-assumption we
discussed earlier. We will also see several mathematical frameworks for
reasoning about the gap between risk and empirical risk.

Let’s start with a foundational example that illustrates these core con-
cepts and their interplay.

A first learning algorithm: The perceptron

As we discussed in the introduction, in 1958 the New York Times reported
the Office of Naval Research claiming the perceptron algorithm3® would
“be able to walk, talk, see, write, reproduce itself and be conscious of its
existence.” Let’s now dive into this algorithm that seemed to have such
unbounded potential.
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Figure 8: Illustration of a linear separator

Toward introducing this algorithm, let’s assume we’re in a binary pre-
diction problem with labels in {—1,1} for notational convenience. The
perceptron algorithm aims to find a linear separator of the data, that is, a hy-
perplane specified by coefficients w € RY that so that all positive examples
lie on one side of the hyperplane and all negative ones on the other.

Formally, we can express this as y;(w,x;) > 0. In other words, the
linear function f(x) = (w, x) agrees in sign with the labels on all training
instances (x;, ;). In fact, the perceptron algorithm will give us a bit more.
Specifically, we require that the sign agreement has some margin y;(w, x;) >
1. That is, when y = 1, the linear function must take on a value of at least 1
and when y = —1, the linear function must be at most —1. Once we find
such a linear function, our prediction Y(x) on a data point x is Y(x) = 1
if (w,x) > 0and Y(x) = —1 otherwise.

The algorithm goes about finding a linear separator w incrementally in
a sequence of update steps.

Perceptron
e Start from the initial solution wy = 0
* Ateachstept=0,1,2,..:

- Select a random index i € {1, ..., n}
- Case 1: If y;(w, x;) < 1, put

W41 = Wt + YiXi

- Case 2: Otherwise put w1 = wy.

Case 1 corresponds to what’s called a margin mistake. The sign of the
linear function may not disagree with the label, but it doesn’t have the
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Figure 9: Illustration of the perceptron update. Left: One misclassified
example x. Right: After update.

required margin that we asked for.
When an update occurs, we have

(i1, %) = (we, x;) + ||x]|?.

In this sense, the algorithm is nudging the hyperplane to be less wrong
on example x;. However, in doing so it could introduce errors on other
examples. It is not yet clear that the algorithm converges to a linear separator
when this is possible.

Connection to empirical risk minimization

Before we turn to the formal guarantees of the perceptron, it is instructive
to see how to relate it to empirical risk minimization. In order to do so, it’s
helpful to introduce two hyperparameters to the algorithm by considering the
alternative update rule:

W1 = YWt + NYiX;

Here 7 is a positive scalar called a learning rate and v € [0,1] is called the
forgetting rate.

First, it’s clear from the description that we’re looking for a linear
separator. Hence, our function class is the set of linear functions f,(x) =
(w, x), where w € R?. We will sometimes call the vector w the weight vector
or vector of model parameters.

An optimization method that picks a random example at each step and
makes a local improvement to the model parameters is the stochastic gradient
method. This method will figure prominently in our chapter on optimization
as it is the workhorse of many machine learning applications today. The
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Hinge loss

Figure 10: Hinge loss

local improvement the method picks at each step is given by a local linear
approximation of the loss function around the current model parameters.
This linear approximation can be written neatly in terms of the vector of
tirst derivatives, called gradient, of the loss function with respect to the
current model parameters.

The formal update rule reads

Wi1 = Wi — Vi, l0oss(fu, (i), yi)

Here, the example (x;,y;) is randomly chosen and the expression
Vuw,loss( fuw,(xi),y;) is the gradient of the loss function with respect to the
model parameters w; on the example (x;,y;). We will typically drop the
vector w; from the subscript of the gradient when it’s clear from the context.
The scalar # > 0 is a step size parameter that we will discuss more carefully
later. For now, think of it as a small constant.

It turns out that we can connect this update rule with the perceptron
algorithm by choosing a suitable loss function. Consider the loss function

loss({w, x),y) = max {1 — y(w,x), 0}.

This loss function is called hinge loss. Note that its gradient is —yx
when y(w, x) < 1 and 0 when y(w, x) > 1.

The gradient of the hinge loss is not defined when y(w,x) = 1. In
other words, the loss function is not differentiable everywhere. This is why
technically speaking the stochastic gradient method operates with what is
called a subgradient. The mathematical theory of subgradient optimization
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rigorously justifies calling the gradient 0 when y(w, x) = 1. We will ignore
this technicality throughout the book.

We can see that the hinge loss gives us part of the update rule in the
perceptron algorithm. The other part comes from adding a weight penalty
2|lw||? to the loss function that discourages the weights from growing out
of bounds. This weight penalty is called ¢»-reqularization, weight decay, or
Tikhonov regularization depending on which field you work in. The purpose
of regularization is to promote generalization. We will therefore return
to regularization in detail when we discuss generalization in more depth.
For now, note that the margin constraint we introduced is inconsequential
unless we penalize large vectors. Without the weight penalty we could
simply scale up any linear separator until it separates the points with the
desired margin.

Putting the two loss functions together, we get the /,-regularized empir-
ical risk minimization problem for the hinge loss:

1 Ao
o max {1 — y;(w, x;), O}+§HwH2

i=1

The perceptron algorithm corresponds to solving this empirical risk objective
with the stochastic gradient method. The constant 7, which we dubbed
the learning rate, is the step size of the stochastic gradient methods. The
forgetting rate constant v is equal to (1 — 7A). The optimization problem is
also known as support vector machine and we will return to it later on.

A word about surrogate losses

When the goal was to maximize the accuracy of a predictor, we mathemat-
ically solved the risk minimization problem with respect to the zero-one

loss
loss(y,y) = Wy # y}

that gives us penalty 1 if our label is incorrect, and penalty 0 if our predicted
label i/ matches the true label y. We saw that the optimal predictor in this
case was a maximum a posteriori rule, where we selected the label with higher
posterior probability.

Why don’t we directly solve empirical risk minimization with respect to
the zero-one loss? The reason is that the empirical risk with the zero-one loss
is computationally difficult to optimize directly. In fact, this optimization
problem is NP-hard even for linear prediction rules.3” To get a better sense
of the difficulty, convince yourself that the stochastic gradient method,
for example, fails entirely on the zero-one loss objective. Of course, the
stochastic gradient method is not the only learning algorithm.
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Figure 11: Hinge, squared, logistic loss compared with the zero-one loss.

The hinge loss therefore serves as a surrogate loss for the zero-one loss.
We hope that by optimizing the hinge loss, we end up optimizing the zero-
one loss as well. The hinge loss is not the only reasonable choice. There
are numerous loss functions that approximate the zero-one loss in different
ways.

e The hinge loss is max{1 — yy,0} and support vector machine refers to
empirical risk minimization with the hinge loss and /,-regularization.
This is what the perceptron is optimizing.

* The squared loss is given by %(y — #)?. Linear least squares regression
corresponds to empirical risk minimization with the squared loss.

e The logistic loss is —log(c (7)) when y = 1 and —log(1 — ¢()) when
y = —1, where 0(z) = 1/(1 4+ exp(—z)) is the logistic function. Lo-
gistic regression corresponds to empirical risk minimization with the
logistic loss and linear functions.

Sometimes we can theoretically relate empirical risk minimization under
a surrogate loss to the zero-one loss. In general, however, these loss functions
are used heuristically and practitioners evaluate performance by trial-and-
error.

Formal guarantees for the perceptron

We saw that the perceptron corresponds to finding a linear predictor using
the stochastic gradient method. What we haven’t seen yet is a proof that the
perceptron method works and under what conditions. Recall that there are
two questions we need to address. The first is why the perceptron method
successfully fits the training data, a question about optimization. The second
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is why the solution should also correctly classify unseen examples drawn
from the same distribution, a question about generalization. We will address
each in turn with results from the 1960s. Even though the analysis here is
over 50 years old, it has all of the essential parts of more recent theoretical
arguments in machine learning.

Mistake bound

To see why we perform well on the training data, we use a mistake bound
due to Novikoff.3® The bound shows that if there exists a linear separator
of the training data, then the perceptron will find it quickly provided that
the margin of the separating hyperplane isn’t too small.

Margin is a simple way to evaluate how well a predictor separates data.
Any vector w € R? defines a hyperplane H,, = {x : w’x = 0}. Suppose
that the hyperplane H,, corresponding to the vector w perfectly separates
the data in S. Then we define the margin of such a vector w as the smallest
distance of our data points to this hyperplane:

¥(S,w) = min dist(x;, Hy) -

1<i<n
Here,
dist(x, Hyp) = min{|jx — x'[|: ¥’ € Hq} = [, w)] (’J|c;51|7|>|
Overloading terminology, we define the margin of a dataset to be the
maximum margin achievable by any predictor w:
7(S) = max (S, w).
[wll=1
We will now show that when a dataset has a large margin, the perceptron
algorithm will find a separating hyperplane quickly.

Let’s consider the simplest form of the perceptron algorithm. We ini-
tialize the algorithm with wy = 0. The algorithm proceeds by selecting
a random index i; at step t checking whether y; w/x; < 1. We call this
condition a margin mistake, i.e., the prediction w/x;, is either wrong or
too close to the hyperplane. If a margin mistake occurs, the perceptron
performs the update

wt+1 = Wt + yitxit .
That is, we rejigger the hyperplane to be more aligned with the signed
direction of the mistake. If no margin mistake occurs, then w; 1 = wy.

To analyze the perceptron we need one additional definition. Define the
diameter of a data S to be

D(S) = .
(S) (ge)lgstH
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We can now summarize a worst case analysis of the perceptron algorithm
with the following theorem.

Theorem 1. The perceptron algorithm makes at most (2 + D(S)?)(S) =2 margin
mistakes on any sequence of examples S that can be perfectly classified by a linear
separator.

Proof. The main idea behind the proof of this theorem is that since w only
changes when you make a mistake, we can upper bound and lower bound w
at each time a mistake is made, and then, by comparing these two bounds,
compute an inequality on the total number of mistakes.

To find an upper bound, suppose that at step t the algorithm makes a
margin mistake. We then have the inequality:

||wt+1||2 = [|wt + yi,x;, ||2

= [[we|* + 2y;, (e, x3,) + |, |1

< [[wi]2+2+ D($)?.
The final inequality uses the fact that y;, (wy, x;,) < 1. Now, let m; denote
the total number of mistakes made by the perceptron in the first ¢ iterations.

Summing up the above inequality over all the mistakes we make and using
the fact that ||wy|| = 0, we get our upper bound on the norm of w;:

Jeoell < /mi(2+D(3)?).

Working toward a lower bound on the norm of w;, we will use the
following argument. Let w be any unit vector that correctly classifies all
points in S. If we make a mistake at iteration ¢, we have

(W, w1 — we) = (W, y;,%;,) = % > (S w).
Note that the second equality here holds because w correctly classifies the
point (x;,,y;,). This is where we use that the data are linearly separable.
The inequality follows from the definition of margin.
Now, let w, denote the hyperplane that achieves the maximum mar-
gin y(S). Instantiating the previous argument with w,, we find that

t
Jwe|| > (wy, we) =) wl (wy — we_1) > mpy(S),
k=1
where the equality follows from a telescoping sum argument.
This yields the desired lower bound on the norm of w;. Combined with
the upper bound we already derived, it follows that the total number of
mistakes has the bound
24 D(S)?

- (8)?
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The proof we saw has some ingredients we’ll encounter again. Telescop-
ing sums, for example, are a powerful trick used throughout the analysis of
optimization algorithms. A telescoping sum lets us understand the behavior
of the final iterate by decomposing it into the incremental updates of the
individual iterations.

The mistake bound does not depend on the dimension of the data. This
is appealing since the requirement of linear separability and high margin,
intuitively speaking, become less taxing the larger the dimension is.

An interesting consequence of this theorem is that if we run the percep-
tron repeatedly over the same dataset, we will eventually end up with a
separating hyperplane. To see this, imagine repeatedly running over the
dataset until no mistake occurred on a full pass over the data. The mistake
bound gives a bound on the number of passes required before the algorithm
terminates.

From mistake bounds to generalization

The previous analysis shows that the perceptron finds a good predictor on
the training data. What can we say about new data that we have not yet
seen?

To talk about generalization, we need to make a statistical assumption
about the data generating process. Specifically we assume that the data
points in the training set S = {(x1,v1) ..., (Xn, yn) } where each drawn i.i.d.
from a fixed underlying distribution D with the labels taking values {—1,1}
and each x; € RY.

We know that the perceptron finds a good linear predictor for the
training data (if it exists). What we now show is that this predictor also
works on new data drawn from the same distribution.

To analyze what happens on new data, we will employ a powerful
stability argument. Put simply, an algorithm is stable if the effect of removing
or replacing a single data point is small. We will do a deep dive on stability
in our chapter on generalization, but we will have a first encounter with the
idea here.

The perceptron is stable because it makes a bounded number of mistakes.
If we remove a data point where no mistake is made, the model doesn’t
change at all. In fact, it’s as if we had never seen the data point. This lets us
relate the performance on seen examples to the performance on examples
in the training data on which the algorithm never updated.

Vapnik and Chervonenkis presented the following stability argument in
their classic text from 1974, though the original argument is likely a decade
older.3? Their main idea was to leverage our assumption that the data are
iid., so we can swap the roles of training and test examples in the analysis.
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Theorem 2. Let S, denote a training set of n i.i.d. samples from a distribution D
that we assume has a perfect linear separator. Let w(S) be the output of the
perceptron on a dataset S after running until the hyperplane makes no more margin
mistakes on S. Let Z = (X, Y) be an additional independent sample from D. Then,
the probability of making a margin mistake on (X,Y) satisfies the upper bound
1 {2+D(Sn+1)2}

n+1

Yw(S,)TX <1< ——
P[Yw(Sy) < np1es Y(Sn+1)?

Proof. First note that
PlYw'X < 1] = E[1{Yw X < 1}].

Let S, = (Z4, ..., Zy) and with Z; = (Xy, Yy) and put Z,11 = Z = (X, Y).
Note that these 1 + 1 random variables are i.i.d. draws from D. As a purely
analytical device, consider the “leave-one-out set”

S =1Zi,.. ., 21, Zks1) o Zns1 } -

Since the data are drawn i.i.d., running the algorithm on S~* and evaluating
it on Zy = (X, Yx) is equivalent to running the algorithm on S, and
evaluating it on Z, 1. These all correspond to the same random experiment
and differ only in naming. In particular, we have

PlYw(S,)TX < 1] = nL—H %E[H{ka(sk)TXk <1}].
k=1

Indeed, we're averaging quantities that are each identical to the left hand
side. But recall from our previous result that the perceptron makes at most

_ 2+ D((Zy,---, Zu11))?
(21, Zui1))?

margin mistakes when run on the entire sequence (Zi,...,Z;41)-
Let ij,...,iy denote the indices on which the algorithm makes a mistake
in any of its cycles over the data. If k ¢ {i,...,in}, the output of the
algorithm remains the same after we remove the k-th sample from the
sequence. It follows that such k satisfy Y;w(S™%)X; > 1 and therefore k
does not contribute to the summation above. The other terms can at most
contribute 1 to the summation. Hence,

n+1
Y 1{aw(S )X <1} <m,
k=1

and by linearity of expectation, as we hoped to show,

PYw(S,)TX < 1] < %. O
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We can turn our mistake bounds into bounds on the empirical risk and
risk achieved by the perceptron algorithm by choosing the loss function
loss({w, x),y) = 1{(w, x)y < 1}. These bounds also imply bounds on the
(empirical) risk with respect to the zero-one loss, since the prediction error
is bounded by the number of margin mistakes.

Chapter notes

Rosenblatt developed the perceptron in 1957 and continued to publish on
the topic in the years that followed.4* 4" The perceptron project was funded
by the US Office of Naval Research (ONR), who jointly announced the
project with Rosenblatt in a press conference in 1958, that lead to the New
York Times article we quoted earlier. This development sparked significant
interest in perceptrons research throughout the 1960s.

The simple proof the mistake bound we saw is due to Novikoff.3¥ Block
is credited with a more complicated contemporaneous proof.#* Minsky and
Papert attribute a simple analysis of the convergence guarantees for the
perceptron to a 1961 paper by Papert.43

Following these developments Vapnik and Chervonenkis proved the
generalization bound for the perceptron method that we saw earlier, relying
on the kind of stability argument that we will return to in our chapter on
generalization. The proof of Theorem 2 is available in their 1974 book.3?
Interestingly, by the 1970s, Vapnik and Chervonenkis must have abandoned
the stability argument in favor of the VC-dimension.

In 1969, Minksy and Papert published their influential book “Percep-
trons: An introduction to computational geometry”.44 Among other results,
it showed that perceptrons fundamentally could not learn certain concepts,
like, an XOR of its input bits. In modern language, linear predictors cannot
learn parity functions. The results remain relevant in the statistical learning
community and have been extended in numerous ways. On the other hand,
pragmatic researchers realized one could just add the XOR to the feature
vector and continue to use linear methods. We will discuss such feature
engineering in the next chapter.

The dominant narrative in the field has it that Minsky and Papert’s book
curbed enthusiasm for perceptron research and their multilayer extensions,
now better known as deep neural networks. In an updated edition of their
book from 1988, Minsky and Papert argue that work on perceptrons had
already slowed significantly by the time their book was published for a lack
of new results:

One popular version is that the publication of our book so
discouraged research on learning in network machines that a
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promising line of research was interrupted. Our version is that
progress had already come to a virtual halt because of the lack
of adequate basic theories, [...].

On the other hand, the pattern recognition community had realized that
perceptrons were just one way to implement linear predictors. Highleyman
was arguably the first to propose empirical risk minimization and applied
this technique to optical character recognition.3* Active research in the 1960s
showed how to find linear rules using linear programming techniques.*
Work by Aizerman, Braverman and Rozonoer developed iterative methods
to fit nonlinear rules to data.#® All of this work was covered in depth in the
first edition of Duda and Hart, which appeared five years after Perceptrons.

It was at this point that the artificial intelligence community first split
from the pattern recognition community. While the artificial intelligence
community turned towards more symbolic techniques in 1970s, work on
statistical learning continued in Soviet and IEEE journals. The modern view
of empirical risk minimization, of which we began this chapter, came out of
this work and was codified by Vapnik and Chervonenkis in the 1970s.

It wasn’t until the 1980s that work on pattern recognition, and with it
the tools of the 1960s and earlier, took a stronger foothold in the machine
learning community again."* We will continue this discussion in our chapter
on datasets and machine learning benchmarks, which were pivotal in the
return of pattern recognition to the forefront of machine learning research.
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4
Representations and features

The starting point for prediction is the existence of a vector x from which
we can predict the value of . In machine learning, each component of this
vector is called a feature. We would like to find a set of features that are
good for prediction. Where do features come from in the first place?

In much of machine learning, the feature vector x is considered to be
given. However, features are not handed down from first principles. They
had to be constructed somehow, often based on models that incorporate
assumptions, design choices, and human judgments. The construction
of features often follows human intuition and domain specific expertise.
Nonetheless, there are several principles and recurring practices we will
highlight in this chapter.

Feature representations must balance many demands. First, at a pop-
ulation level, they must admit decision boundaries with low error rates.
Second, we must be able to optimize the empirical risk efficiently given
the current set of features. Third, the choice of features also influences the
generalization ability of the resulting model.

There are a few core patterns in feature engineering that are used to meet
this set of requirements. First, there is the process of turning a measurement
into a vector on a computer, which is accomplished by quantization and
embedding. Second, in an attempt to focus on the most discriminative
directions, the binned vectors are sorted relative to their similarity to a set
of likely patterns through a process of template matching. Third, as a way
to introduce robustness to noise or reduce and standardize the dimension
of data, feature vectors are compressed into a low, fixed dimension via
histograms and counts. Finally, nonlinear liftings are used to enable predictors
to approximate complex, nonlinear decision boundaries. These processes
are often iterated, and often times the feature generation process itself is
tuned on the collected data.
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Measurement

Before we go into specific techniques and tricks of trade, it’s important
to recognize the problem we're dealing with in full generality. Broadly
speaking, the first step in any machine learning process is to numerically
represent objects in the real world and their relationships in a way that can
be processed by computers.

There is an entire scientific discipline, called measurement theory, de-
voted to this subject. The field of measurement theory distinguishes be-
tween a measurement procedure and the target construct that we wish to
measure.#7/4%49 Physical temperature, for example, is a construct and a
thermometer is a measurement device. Mathematical ability is another
example of a construct; a math exam can be thought of as a procedure for
measuring this construct. While we take reliable measurement of certain
physical quantities for granted today, other measurement problems remain
difficult.

It is helpful to frame feature creation as measurement. All data stems
from some measurement process that embeds and operationalizes numerous
important choices.>° Measurement theory has developed a range of tech-
niques over the decades. In fact, many measurement procedures themselves
involve statistical models and approximations that blur the line between
what is a feature and what is a model. Practitioners of machine learning
should consult with experts on measurement within specific domains be-
fore creating ad-hoc measurement procedures. More often than not there is
much relevant scholarship on how to measure various constructs of interest.
When in doubt it’s best to choose constructs with an established theory.

Human subjects

The complexities of measurement are particularly apparent when our fea-
tures are about human subjects. Machine learning problems relating to
human subjects inevitably involve features that aim to quantify a person’s
traits, inclinations, abilities, and qualities. Researchers often try to get at
these constructs by designing surveys, tests, or questionnaires. However,
much data about humans is collected in an ad-hoc manner, lacking clear
measurement principles. This is especially true in a machine learning
context.

Featurization of human subjects can have serious consequences. Recall
the example of using prediction in the context of the criminal justice system.
The COMPAS recidivism risk score is trained on survey questions designed
using psychometric models to capture archetypes of people that might
indicate future criminal behavior. The exam asks people to express their
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degree of agreement with statements such as “I always practice what I
preach,” “I have played sick to get out of something,” and “I've been seen
by others as cold and unfeeling.”?* Though COMPAS features have been
used to predict recidivism, they have been shown to be no more predictive
than using age, gender, and past criminal activity.>*

Machine learning and data creation involving human subjects should be
ethically evaluated in the same manner as any other scientific investigation
with humans. Depending on context, different ethical guidelines and
regulations exist that aim at protecting human research subjects. The 1979
Belmont Report is one ethical framework, commonly applied in the United
States. It rests on the three principles of respect for persons, beneficence, and
justice. Individuals should be treated as autonomous agents. Harm should
be minimized, while benefits should be maximized. Inclusion and exclusion
should not unduly burden specific individuals, as well as marginalized and
vulnerable groups.

Universities typically require obtaining institutional approval and de-
tailed training before conducting human subject research. These rules apply
also when data is collected from and about humans online.

We advise any reader to familiarize themselves with all applicable rules
and regulations regarding human subject research at their institution.

Quantization

Signals in the real world are often continuous and we have to choose how
to discretize them for use in a machine learning pipeline. Broadly speaking,
such practices fall under the rubric of quantization. In many cases, our
goal is to quantize signals so that we can reconstruct them almost perfectly.
This is the case of high resolution photography, high fidelity analog-to-
digital conversion of audio, or perfect sequencing of proteins. In other
cases, we may want to only record skeletons of signals that are useful for
particular tasks. This is the case for almost all quantizations of human
beings. While we do not aim to do a thorough coverage of this subject,
we note quantization is an essential preprocessing step in any machine
learning pipeline. Improved quantization schemes may very well translate
into improved machine learning applications. Let us briefly explore a few
canonical examples and issues of quantization in contemporary data science.

Images

Consider the raw bitmap formatting of an image. A bitmap file is an array
indexed by three coordinates. Mathematically, this corresponds to a tensor
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of order 3. The first two coordinates index space and the third indexes a
color channel. That is, x;jx denotes the intensity at row i, column j, and
color channel k. This representation summarizes an image by dividing two
dimensional space into a regular grid, and then counting the quantity of
each of three primary colors at each grid location.

This pixel representation suffices to render an image on a computer
screen. However, it might not be useful for prediction. Images of the
same scene with different lighting or photographic processes might end up
being quite dissimilar in a pixel representation. Even small translations of
two images might be far apart from each other in a pixel representation.
Moreover, from the vantage point of linear classification, we could train a
linear predictor on any ordering of the pixels, but scrambling the pixels in an
image certainly makes it unrecognizable. We will describe transformations
that address such shortcomings of pixel representations in the sequel.

Text

Consider a corpus of n documents. These documents will typically have
varying length and vocabulary. To embed a document as a vector, we can
create a giant vector for every word in the document where each component
of the vector corresponds to one dictionary word. The dimension of the
vector is therefore the size of the dictionary. For each word that occurs in
the document we set the corresponding coordinate of the vector to 1. All
other coordinates corresponding to words not in the document we set to 0.

This is called a one-hot encoding of the words in the dictionary. The
one-hot encoding might seem both wasteful due to the high dimension
and lossy since we don’t encode the order of the words in the document.
Nonetheless, it turns out to be useful in a number of applications. Since
typically the language has more dictionary words than the length of the
document, the encoding maps a document to a very sparse vector. A corpus
of documents would map to a set of sparse vectors.

Template matching

While quantization can often suffice for prediction problems, we highlighted
above how this might be too fine a representation to encode when data
points are similar or dissimilar. Often times there are higher level patterns
that might be more representative for discriminative tasks. A popular way to
extract these patterns is template matching, where we extract the correlation
of a feature vector x with a known pattern v, called template.
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At a high level, a template match creates a feature x' from the feature x
by binning the correlation with a template. A simple example would be to
fix a template v and compute

x' = max {v'x, 0}.

We now describe some more specific examples that are ubiquitous in pattern
classification.

Fourier, cosine, and wavelet transforms

One of the foundational patterns that we match to spatial or temporal data
is sinusoids. Consider a vector in R? and the transformation with k-th
component
I |, T
X = v xl .

Here the ¢-th component of vy is given by vy = exp(27tikl/d). In this case
we are computing the magnitude of the Fourier transform of the feature vector.
This transformation measures the amount of oscillation in a vector. The
magnitude of the Fourier transform has the following powerful property:
Suppose z is a translated version of x so that

Zk = X(k+s)modd

for some shift s. Then one can check that for any vy,
T T
v x| = vzl

That is, the magnitude of the Fourier transform is translation invariant. There
are a variety of other transforms that fall into this category of capturing the
transformation invariant content of signals including cosine and wavelet
transforms.

Convolution

For spatial or temporal data, we often consider two data points to be
similar if we can translate one to align with another. For example, small
translations of digits are certainly the same digit. Similarly, two sound
utterances delayed by a few milliseconds are the same for most applications.
Convolutions are small templates that are translated over a feature figure
to count the number of occurrences of some pattern. The output of a
convolution will have the same spatial extent as the input, but will be a
“heat map” denoting the amount of correlation with the template at each
location in the vector. Multiple convolutions can be concatenated to add
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discriminative power. For example, if one wants to design a system to
detect animals in images, one might design a template for heads, legs, and
tails, and then linear combinations of these appearances might indicate the
existence of an animal.

Summarization and histograms

Histograms summarize statistics about counts in data. These serve as a
method for both reducing the dimensionality of an input and removing
noise in the data. For instance, if a feature vector was the temperature in a
location over a year, this could be converted into a histogram of temperatures
which might better discriminate between locations. As another example,
we could downsample an image by making a histogram of the amount of
certain colors in local regions of the image.

Bag of words

We could summarize a piece of text by summing up the one-hot encoding
of each word that occurs in the text. The resulting vector would have entries
where each component is the number of times the associated word appears
in the document. This is a bag of words representation of the document.
A related representation that might take the structure of text better into
account might have a bag of words for every paragraph or some shorter-
length contiguous context.

Bag of words representations are surprisingly powerful. For example,
documents about sports tend to have a different vocabulary than documents
about fashion, and hence are far away from each other in such an embedding.
Since the number of unique words in any given document is much less than
all possible words, bag-of-words representations can be reasonably compact
and sparse. The representations of text as large-dimensional sparse vectors
can be deployed for predicting topics and sentiment.

Downsampling/pooling

Another way to summarize and reduce dimension is to locally average a
signal or image. This is called downsampling. For example, we could
break an image into 2x2 grids, and take the average or maximum value in
each grid. This would reduce the image size by a factor of 4, and would
summarize local variability in the image.
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Figure 12: A cartoon classification problem for polynomial classification.
Here, the blue dot denotes the center of the displayed circle.

Nonlinear predictors

Once we have a feature vector x that we feel adequately compresses and
summarizes our data, the next step is building a prediction function f(x).
The simplest such predictors are linear functions of x, and linear functions
are quite powerful: all of the transformations we have thus far discussed
in this chapter often suffice to arrange data such that linear decision rules
have high accuracy.

However, we oftentimes desire further expressivity brought by more
complex decision rules. We now discuss many techniques that can be used
to build such nonlinear rules. Our emphasis will highlight how most of
these operations can be understood as embedding data in spaces where
linear separation is possible. That is: we seek a nonlinear transformation of
the feature vector so that linear prediction works well on the transformed
features.

Polynomials

Polynomials are simple and natural nonlinear predictors. Consider the
dataset in the figure below. Here the data clearly can’t be separated by a
linear function, but a quadratic function would suffice. Indeed, we’d just
use the rule that if (x; —c1)? + (x2 — c2)? < ¢3 then (x1,x;) would have
label y = 1. This rule is a quadratic function of (x1, x2).

To fit quadratic functions, we only need to fit the coefficients of the

55



function. Every quadratic function can be written as a sum of quadratic
monomials. This means that we can write quadratic function estimation as
titting a linear function to the feature vector:

I T
PV (x)=[1 x1 x 22 xix2 3

Any quadratic function can be written as wTCDEOIY(x) for some w. The

map (IDIZDOIY is a lifting function that transforms a set of features into a more
expressive set of features.

The features associated with the quadratic polynomial lifting function
have an intuitive interpretation as crossproducts of existing features. The
resulting prediction function is a linear combination of pairwise products
of features. Hence, these features capture co-occurrence and correlation of
a set of features.

The number of coefficients of a generic quadratic function in d dimen-

sions is
d+2
2 7

which grows quadratically with dimension. For general degree p polyno-

mials, we could construct a lifting function CIDI;OIY(x) by listing all of the
monomials with degree at most p. Again, any polynomial of degree p can

be written as wTCDI;Oly(x) for some w. In this case, QDEOIy(x) would have

<d + p>
p
terms, growing roughly as d”. It shouldn’t be too surprising to see that as

the degree of the polynomial grows, increasingly complex behavior can be
approximated.

How many features do you need?

Our discussion of polynomials led with the motivation of creating nonlinear
decision boundaries. But we saw that we could also view polynomial
boundaries as taking an existing feature set and performing a nonlinear
transformation to embed that set in a higher dimensional space where we
could then search for a linear decision boundary. This is why we refer to
nonlinear feature maps as lifts.

Given expressive enough functions, we can always find a lift such that a
particular dataset can be mapped to any desired set of labels. How high of
a dimension is necessary? To gain insights into this question, let us stack
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all of the data points x1,...,x, € RY into a matrix X with n rows and d
columns. The predictions across the entire dataset can now be written as

v=Xw.

If the x; are linearly independent, then as long as d > n, we can make
any vector of predictions y by finding a corresponding vector w. For the
sake of expressivity, the goal in feature design will be to find lifts into high
dimensional space such that our data matrix X has linearly independent
columns. This is one reason why machine learning practitioners lean
towards models with more parameters than data points. Models with more
parameters than data points are called overparameterized.

As we saw in the analysis of the perceptron, the key quantities that
governed the number of mistakes in the perceptron algorithm were the
maximum norm of x; and the norm of the optimal w. Importantly, the
dimension of the data played no role. Designing features where w has
controlled norm is a domain specific challenge, but has nothing to do with
dimension. As we will see in the remainder of this book, high dimensional
models have many advantages and few disadvantages in the context of
prediction problems.

Basis functions

Polynomials are an example of basis functions. More generally, we can
write prediction functions as linear combinations of B general nonlinear
functions {by}:

B
flx) =) wibi(x)
k=1

In this case, there is again a lifting function ®p,qs(x) into B dimensions
where the kth component is equal to bi(x) and f(x) = w! Pp,gs(x). There
are a variety of basis functions used in numerical analysis including trigono-
metric polynomials, spherical harmonics, and splines. The basis function
most suitable for a given task is often dictated by prior knowledge in the
particular application domain.

A particularly useful set in pattern classification are the radial basis
functions. A radial basis function has the form

bz (x) = ¢([|x —z])

where z € R? and ¢ : R — R. Most commonly,
O
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Figure 13: Radial Basis Function approximation of sin(x). We plot the four
Gaussian bumps that sum to approximate the function.

for some y > 0. In this case, given zy, ..., zk, our functions take the form
k 2
j=1

Around each anchor point z;, we place a small Gaussian bump. Combin-
ing these bumps with different weights allows us to construct arbitrary
functions.

How to choose the z;? In low dimensions, z could be placed on a regular
grid. But the number of bases would then need to scale exponentially with
dimension. In higher dimensions, there are several other possibilities. One
is to use the set of training data. This is well motivated by the theory of
reproducing kernels. Another option would be to pick the z; at random,
inducing random features. A third idea would be to search for the best z;.
This motivates our study of neural networks. As we will now see, all three of
these methods are powerful enough to approximate any desired function,
and they are intimately related to each other.

Kernels

One way around high dimensionality is to constrain the space of prediction
function to lie in a low dimensional subspace. Which subspace would be
useful? In the case of linear functions, there is a natural choice: the span of
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the training data. By the fundamental theorem of linear algebra, any vector
in R can be written as sum of a vector in the span of the training data and
a vector orthogonal to all of the training data. That is,

w=) ax;+0

-

I
[y

1

where v is orthogonal to the x;. But if v is orthogonal to every training data
point, then in terms of prediction,

n
wai = Z [X]'x]sz' .
j=1

That is, the v has no bearing on in-sample prediction whatsoever. Also
note that prediction is only a function of the dot products between the
training data points. In this section, we consider a family of prediction
functions built with such observations in mind: we will look at functions
that expressly let us compute dot products between liftings of points, noting
that our predictions will be linear combinations of such lifted dot products.

Let ®(x) denote any lifting function. Then

k(x,z) i= ®(x)Td(z)

is called the kernel function associated with the feature map ®. Such kernel
functions have the property that for any x, ..., x,;, the matrix K with entries

Ki]' = k(x,-, x])

is positive semidefinite. This turns out to be the key property to define
kernel functions. We say a symmetric function k : R? x RY — R is a kernel
function if it has this positive semidefiniteness property.

It is clear that positive combinations of kernel functions are kernel
functions, since this is also true for positive semidefinite matrices. It is also
true that if k; and k, are kernel functions, then so is k1k,. This follows
because the elementwise product of two positive semidefinite matrices is
positive semidefinite.

Using these rules, we see that the function

k(x,z) = (a+bxTz)?

where a,b > 0, p a positive integer is a kernel function. Such kernels are
called a polynomial kernels. For every polynomial kernel, there exists an
associated lifting function ® with each coordinate of ® being a monomial
such that

k(x,z) = ®(x)T®(z2).
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As a simple example, consider the 1-dimensional case of a kernel
k(u,0) = (14 uv)?.
Then k(u,v) = ®(u)T®(v) for

1
d(u) = [\/Ezu] :

u

We can generalize polynomial kernels to Taylor Series kernels. Suppose
that the one dimensional function & has a convergent Taylor series for
all t € [-R,R]:

h(t) =Y at
=1
where aj > 0 for all j. Then the function
K(x,2) = h((x,2))

is a positive definite kernel. This follows because each term (x,z)/ is a
kernel, and we are taking a nonnegative combination of these polynomial
kernels. 